Monitoring Extreme-scale
Lustre Toolkit

Michael J. Brim
Joshua K. Lothian

Computer Science Research Group
Computer Science & Mathematics Division
Oak Ridge National Laboratory

ORNL is managed by UT-Battelle %OAK RIDGE

for the US Department of Energy National Laboratory

Tree-Based Overlay Networks (TBONSs)

* Designed to address scalability problems in master-worker
tool/application architectures

» Overlay network structured as a tree graph
— provides logarithmic scaling for multicast/gather communication
— provides distributed data processing (e.g., filtering, reductions)

* Distributed Data Processing
— distribute processing across subtrees to reduce master load
— for streaming data, pipeline parallelism on paths from leaves to root

* Tree topology can be optimized based on communication and
data processing needs

— Balanced: equal fan-out from all vertices at a given tree depth
» good for load-balanced distributed aggregation

— Binomial: good for streaming throughput

OAK
RIDGE

National Laboratory

MRNet (since 2003)

 General-purpose
TBON API (C++)

— Network: user-defined topology
— Stream: logical data channel

* to a set of back-ends

« multicast, gather, and custom
filter reduction

— Packet: collection of data
— Filter: stream data operator

* synchronization

* transformation

» Tool developer writes front-end
(FE), back-end (BE), and Stream

Filter code using library AP

* MRNet provides communication
process (CP) executable

OAK
'RIDGE

National Laboratory

The Birth of an Idea

@Brad Settlemyer - Hey Mike, do you think it would be
possible to build an MRNet-based tool to diagnose Lustre
locking issues?

@Mike - Sure, assuming the problem can be tackled using
hierarchical data aggregation.

... a couple months pass ...

@Brad - Could you use the same infrastructure to continuously
monitor Lustre performance and detect problems?

@Mike - That sounds a bit like my parallel top tool, only more
Lustre oriented.

@Mike - But in its current state, you can’t use MRNet across

separate network domains. OAK

RIDGE

National Laboratory

Current Lustre Performance Monitoring

» General-purpose host monitoring
— Collectl
— Ganglia
— NAGIOS

* Lustre-specific performance monitoring
— LLNL LMT
« server-side monitoring (OSS, MDS, LNET)
* realtime monitoring via top-like display
* uses a real database to store historical data!
» dependent on LLNL Cerebro, multicast can be hard to deploy
— TACC lltop/xItop
 server-side monitoring (0SS, MDS)
* integrates with batch job system to display per-job information

. direlctbs_ls_th/socket connections between master and server daemons => limits
scalability

— Collectl plugin for Lustre
 single host information for clients, OSS, and MDS
» detailed info available on clients and OSS

OAK
'RIDGE

National Laboratory

Limitations of Current Lustre Monitoring

* Limitations of current toolkits include one or more of:
— problem analysis is generally post-mortem

— hard to correlate measurements:
* across clients within a job or application
 across servers used by a job or application

* across servers used by a given client

— lack of insight into MDS, LNET, etc.
— scalability (# of monitored nodes)
— center-wide monitoring

OAK
RIDGE

National Laboratory

Lustre Monitoring Grand Vision

* Full visibility
— clients, MDS, OSS, OST, LNET
— storage devices (if possible)

» Support for center-wide deployments

— multiple compute systems sharing one or more Lustre
filesystems

* Two usage modes

1. always on, low-overhead monitoring
with active problem detection and alerting

2. on demand, in-depth problem inspection and diagnosis

aka “Right Now Queries”

OAK
RIDGE

National Laboratory

Monitoring Extreme-scale Lustre Toolkit
(MELT)

 Collects Lustre performance metrics
— on clients, OSS, MDS, LNET

» Uses SNOflake overlay network to:

— aggregate metric data into performance summaries
* for clients and LNET routers of each compute cluster
» for OSS and MDS servers of each storage cluster

— correlate data within and across compute/storage domains
 within compute domain: e.g., app-level or job-level aggregation

 across compute/storage domains: identify server or filesystem
contention

OAK
RIDGE

National Laboratory

MELT Command-line Interface

melt [options] target mode classes [mode-opts]

* Targets - specifies information source
— fs: filesystem-level information
— Jjob: information for a given job
— oss: information for a given OSS server
— mds: information for a given MDS server or all MDS
— c1lnt: information for a given client

OAK
RIDGE

National Laboratory

MELT Command-line Interface

melt [options] target mode classes [mode-opts]

* Modes - controls how information aggregated
— status: min/max/sum/avg (default is sum)
— top: show top-k entries for a given metric and k-value

* Metric Classes - which metrics to gather
— 10, lock, meta, rpc, client, op, path
— each class has a set of associated metrics

* e.g., I0 RD BW,META OP RATE, RPC PENDING

OAK
RIDGE

National Laboratory

MELT CLI Example - Filesystems Status

% melt fs status io,meta —-delay=1lm \
-metrics=I0 RD BW,IO WR BW,META OP RATE

TIME FILESYS RD BW WR BW MD RATE
08:30:32 knotl 217 MB/s 133 MB/s 7 op/s
08:30:33 knot?2 49 MB/s 7.6 GB/s 43 op/s
08:31:33 knotl 183 MB/s 94 MB/s 0 op/s
08:31:35 knot?2 53 MB/s 7.8 GB/s 61 op/s

OAK

RIDGE

National Laboratory

MELT CLI Example - Job Status

% melt job=tait.1234 status io,meta —-delay=5m \
-metrics=I0 RD BW,IO WR BW,META OP RATE

TIME RD BW WR BW MD RATE
08:40:32 692 MB/s 0 B/s 75 op/s
08:45:33 117 MB/s 13 MB/s 33 op/s
08:50:32 0 B/s 9 MB/s 13 op/s
08:55:32 0 B/s 8 MB/s 14 op/s

09:00:33 153 MB/s 2 MB/s 47 op/s

OAK
RIDGE

National Laboratory

MELT CLI Example - Filesystem Status

% melt fs=knot2 status io,rpc —-delay=10s \
-metrics=I0 RD BW,IO CLNT DIRTY,RPC_ PENDING
TIME WR BW CL DIRTY RPC PEND
08:34:16 7.7 GB/s 1.32 TB 32345
08:34:26 7.8 GB/s 1.30 TB 30178
08:34:35 7.4 GB/s 1.29 TB 29006

08:36:45 7.9 GB/s 91.7 GB 2450
08:36:56 3.3 GB/s 7.85 GB 913
08:37:06 127 MB/s 372 MB 123

OAK
RIDGE

National Laboratory

MELT CLI Example - Filesystem Top Jobs

% melt —group=job fs=knot2 top io \
-topk=5 —-topmetric=IO RD BW \
-metrics=IO0 RD BW,IO CLNT AVG RD SZ,\

IO CLNT AVG RD TIME

JOB RD BW RD SZ RD TIME

conway.2789 12 GB/s 127 MB ©63.9 ms

tait.4321 7.8 GB/s 156 MB 72.3 ms
euler.22397 7.2 GB/s 112 MB 64.5 ms
tait.4334 3.4 GB/s 354 MB 283 ms

euler.22388 780 MB/s 31.9 MB 54.7 ms

OAK
RIDGE

National Laboratory

MELT CLI Example - Job Performance Log

$ melt —-group=job -format=log fs status io \
-delay=5m

Jan 15 11:22:33 skein melt[123]: job=tait.1111] IO RD BW=20M/s
IO WR BW=476M/s IO CLNT NUM=256 IO CLNT DIRTY=4.3G
IO CLNT AVG RD SZ=776K IO CLNT AVG WR SZ=1M

Jan 15 11:22:33 skein melt[123]: job=tait.1113 IO RD BW=89M/s
I0 WR BW=21M/s IO CLNT NUM=64 IO CLNT DIRTY=1.2G
I0 CLNT AVG RD SZ=507K IO CLNT AVG WR SZ=123K

Jan 15 11:22:33 skein melt[123]: job=tait.1114 IO RD BW=364M/s
IO WR BW=28M/s IO CLNT NUM=32 IO CLNT DIRTY=86M
IO CLNT AVG RD SZ=1.4M IO CLNT AVG WR SZ=67K

Jan 15 11:27:37 skein melt[123]: job=tait.1113 IO RD BW=52M/s
IO WR BW=156M/s IO CLNT NUM=64 IO CLNT DIRTY=5.5G
IO CLNT _AVG RD S7Z= 27K IO CLNT AVG WR S7Z=509M

Jan 15 11:27:37 skein melt[123]: job=tait.1114 IO_RD_BW=364M/S
IO WR BW=28M/s IO CLNT NUM=32 IO CLNT DIRTY=86M OAK
IO CLNT AVG RD SZ=1.4M IO CLNT AVG WR SZ=67K .. RIDGE

National Laboratory

SNOflake - Scalable Network Overlay

« General-purpose overlay network infrastructure for
constructing distributed services, tools, and apps
— bootstrapping and distributed launching
« system-level and user-level
« deployments spanning intra-network domains

— peer and group communication
* leverage advanced network capabilities (e.g., RDMA or collectives)

— integrated, customizable data analysis and aggregation

» Real Scalability: no changes to core design/architecture
required for use on future “extreme scale” systems

* Real Resilience: overlay network should persist as long
as any of the constituent distributed systems are
operational

OAK
RIDGE

National Laboratory

SNOflake Design Characteristics

« Support for cross-domain overlay deployments

- Simple yet flexible APl in C
— Session represents an overlay shared among clients
— each Session supports many logical Services
— each Service supports many data Streams

— Streams used to transfer/process opaque Data Buffers, rather than
formatted Packets

— Filter Graph instead of single filter per Stream

» Ability to leverage advanced networking capabilities

— incorporate layers such as the Common Communication Interface
(CCl) or the Universal Common Communication Substrate (UCCS)

OAK
RIDGE

National Laboratory

SNOflake Architecture Overview

- Deploy TBONSs on separate resource domains

— place Tree Managers (i.e., TBON roots) on hosts with inter-domain
communication capability

— use separate trees for distinct resource classes within same distributed
system (e.g., compute, management, storage)

* Ring of Tree Managers
— data routing between TBONs
— state replication within ring for fault tolerance

« “SNOflake as a Service”

— at-boot SNOflake provides bootstrap/launch service for scalable deployment
of additional SNOflake-based services, tools, and apps

SNOflake Architecture

Resource
Domain

Session
App / Tool

Session
Root

Tree
Manager

Tree
Process

OAK
RIDGE

National Laborato: ry

MELT Architecture Overview

» Uses SNOflake overlay network for:

— aggregating metric data into performance summaries for
each domain

— correlating data within and across domains

* Deploys monitoring services and associated backend
agents on clients, servers, and LNET routers

— intended as an on-boot infrastructure

OAK
RIDGE

National Laboratory

MELT Continuous Monitoring

* meltmon frontend

— controls default aggregations and sampling rates for all
the metrics

— periodically polls the job scheduling system(s) to
associate compute nodes with jobs

* multicasts the job=>{node,...} mappings to client agents
— dumps aggregated metrics to logs

OAK
RIDGE

National Laboratory

MELT On-Demand Investigation

* CLI tool attaches to MELT session as additional
frontend

* Tool may:

— subscribe to existing service data streams
* no additional transmission of performance data vs. meltmon

— create new streams that use different metric
aggregations (e.g., to filter on a specific job)
 performance data from backends will be sent on multiple streams

» Backends sample at the highest requested rate for
a given metric

OAK
RIDGE

National Laboratory

MELT - backend data collection

e Considered methods

1. read directly from Lustre /proc files
- first-party, likely most efficient method
* high development/maintenance cost (e.g., procfs to sysfs) %

2. leverage Collectl Lustre plugin

 already used at a number of sites, integrates well with other
monitoring (e.g., Ganglia)

* ongoing support a concern
* overhead of Perl a concern

3. use persistent Ictl and periodic queries
* @Andreas Dilger — Ictl is “the path forward” for reading metrics
» improvements/fixes will be integrated into ongoing releases
« overhead of third-party collection a concern

OAK
RIDGE

National Laboratory

MELT - backend data collection

* Choice between collectl and Ictl

* Experiment to monitor overheads on a single host
— sample client per-OST statistics
 polling 56 separate entries in /proc (one per OST)
— Collectl default sampling rate is every 10 seconds

— simulate whole-day collection (8640 total samples) by
decreasing inter-sample delay to O

— measure walltime, CPU & memory usage
* via /usr/bin/time, which uses wait4() to get rusage data

OAK
RIDGE

National Laboratory

Time (seconds)

MELT - collectl vs. Ictl overhead

* Collectl MELT querying Ictl

— average time per sample ~ 8.8ms — average time per sample ~ 6.7ms
— average CPU load 99% — average CPU load 27.2%
~ .087% scaled to normal sampling * ~.018% scaled to normal sampling
— maximum resident memory ~ 79MB — maximum resident memory ~ 124MB
Time spent over 8640 samples Memory used over 8640 samples
90 140000
80 120000 _ _ _ _ _
70
60 E 100000
50 ‘5 80000
40 = collect! time £ 60000
30 . 2
"' melt time = 40000
20 ==b=collectl mem ==melt mem
10 20000
0 0
1 2 3 4 5 1 2 3 4 5
Trial Trial
OAK

RIDGE

National Laboratory

MELT - Ictl bugs and improvements

 Using a persistent Ictl and periodically querying it
has revealed a few usability issues

— no clear marker to indicate end of query response
* have a quick fix, still need to submit patch

— Initial request determines query buffer size, so
subsequent longer requests are truncated

- already fixed (by others) in git head
— query command options ignored in subsequent requests

OAK
RIDGE

National Laboratory

SNOflake Implementation Status

« Complete
— bootstrapping over multiple domains
— core communication (for base TCP sockets)
— basic data filtering

» Under Construction
— frontend/backend client AP| and request servicing
— service-launching service

* Future Work
— ring-state replication
— TBON recover after overlay process failure
— Iintegration of advanced network abstraction layers

OAK
RIDGE

National Laboratory

MELT Implementation Status

- Backend agents

— collecting an initial set of relevant metrics
— on clients, OSS, MDS, and LNET routers

* Metric data aggregations

— implementing metric-specific performance summaries
(min,max,sum,avg) as data filter aggregations

— considering other aggregations such as histograms

* Under construction

— meltmon frontend
— CLI frontend

OAK
RIDGE

National Laboratory

You’re the experts - Please advise

» Still a work-in-progress
— you can influence delivered capabilities

* What metrics are you most interested in?
— are there new metrics you would like added to Lustre?

 Besides instantaneous performance summaries and
a historical record of such summaries, what else?

OAK
RIDGE

National Laboratory

Future Directions: Performance Alerts

* With continuous monitoring, opportunity to detect
anomalous performance and notify

» Challenges

— what's anomalous: need a baseline
- for any metric that you wish to alert on
— performance is dependent on offered load

— changing workloads could move the baseline

OAK
RIDGE

National Laboratory

Future Directions: Oracle Mode

* Assuming MELT command-line tools allow
experienced admins to find root causes of
performance problems, can we embed that
expertise in the tools

 Add a new “oracle” mode that searches for common
problems on a filesystem or server level

* Challenges
— copying the brains of expert admins
— what level of overhead is acceptable for oracle mode?
— Is this something you could give to users for job-level
problem diagnosis?

OAK
RIDGE

National Laboratory

