
ORNL is managed by UT-Battelle
for the US Department of Energy

Monitoring Extreme-scale
Lustre Toolkit

Michael J. Brim
Joshua K. Lothian

Computer Science Research Group
Computer Science & Mathematics Division
Oak Ridge National Laboratory

Tree-Based Overlay Networks (TBONs)
•  Designed to address scalability problems in master-worker

tool/application architectures

•  Overlay network structured as a tree graph
–  provides logarithmic scaling for multicast/gather communication
–  provides distributed data processing (e.g., filtering, reductions)

•  Distributed Data Processing
–  distribute processing across subtrees to reduce master load
–  for streaming data, pipeline parallelism on paths from leaves to root

•  Tree topology can be optimized based on communication and
data processing needs
–  Balanced: equal fan-out from all vertices at a given tree depth

•  good for load-balanced distributed aggregation

–  Binomial: good for streaming throughput

MRNet (since 2003)
• General-purpose

TBŌN API (C++)
–  Network: user-defined topology
–  Stream: logical data channel

•  to a set of back-ends
•  multicast, gather, and custom

filter reduction

–  Packet: collection of data
–  Filter: stream data operator

•  synchronization
•  transformation

•  Tool developer writes front-end
(FE), back-end (BE), and Stream
Filter code using library API

•  MRNet provides communication
process (CP) executable

FE

… … … BE

app app app app

BE

app app app app

BE

app app app app

BE

app app app app

CP CP

CP CP CP CP

F(p1,…,pn)

The Birth of an Idea

@Brad Settlemyer - Hey Mike, do you think it would be
possible to build an MRNet-based tool to diagnose Lustre
locking issues?

@Mike - Sure, assuming the problem can be tackled using
hierarchical data aggregation.

… a couple months pass …

@Brad - Could you use the same infrastructure to continuously
monitor Lustre performance and detect problems?

@Mike - That sounds a bit like my parallel top tool, only more
Lustre oriented.

@Mike - But in its current state, you can’t use MRNet across
separate network domains.

Current Lustre Performance Monitoring
•  General-purpose host monitoring

–  Collectl
–  Ganglia
–  NAGIOS

•  Lustre-specific performance monitoring
–  LLNL LMT

•  server-side monitoring (OSS, MDS, LNET)
•  realtime monitoring via top-like display
•  uses a real database to store historical data!!
•  dependent on LLNL Cerebro, multicast can be hard to deploy

–  TACC lltop/xltop
•  server-side monitoring (OSS, MDS)
•  integrates with batch job system to display per-job information
•  direct ssh/socket connections between master and server daemons => limits

scalability
–  Collectl plugin for Lustre

•  single host information for clients, OSS, and MDS
•  detailed info available on clients and OSS

Limitations of Current Lustre Monitoring

• Limitations of current toolkits include one or more of:
–  problem analysis is generally post-mortem
–  hard to correlate measurements:

•  across clients within a job or application

•  across servers used by a job or application

•  across servers used by a given client

•  ...

–  lack of insight into MDS, LNET, etc.
–  scalability (# of monitored nodes)
–  center-wide monitoring

Lustre Monitoring Grand Vision

• Full visibility
–  clients, MDS, OSS, OST, LNET
–  storage devices (if possible)

• Support for center-wide deployments
– multiple compute systems sharing one or more Lustre

filesystems

• Two usage modes
1.  always on, low-overhead monitoring

•  with active problem detection and alerting

2.  on demand, in-depth problem inspection and diagnosis
•  aka “Right Now Queries”

Monitoring Extreme-scale Lustre Toolkit
(MELT)
• Collects Lustre performance metrics

–  on clients, OSS, MDS, LNET

• Uses SNOflake overlay network to:
–  aggregate metric data into performance summaries

•  for clients and LNET routers of each compute cluster
•  for OSS and MDS servers of each storage cluster

–  correlate data within and across compute/storage domains
•  within compute domain: e.g., app-level or job-level aggregation
•  across compute/storage domains: identify server or filesystem

contention

MELT Command-line Interface

melt [options] target mode classes [mode-opts]

• Targets - specifies information source
–  fs: filesystem-level information
–  job: information for a given job
–  oss: information for a given OSS server
–  mds: information for a given MDS server or all MDS
–  clnt: information for a given client

MELT Command-line Interface

melt [options] target mode classes [mode-opts]

• Modes - controls how information aggregated
–  status: min/max/sum/avg (default is sum)
–  top: show top-k entries for a given metric and k-value

• Metric Classes - which metrics to gather
–  io, lock, meta, rpc, client, op, path
–  each class has a set of associated metrics

•  e.g., IO_RD_BW, META_OP_RATE, RPC_PENDING

MELT CLI Example – Filesystems Status
% melt fs status io,meta –delay=1m \

 –metrics=IO_RD_BW,IO_WR_BW,META_OP_RATE

 TIME FILESYS RD_BW WR_BW MD_RATE

-------- -------- -------- -------- --------

08:30:32 knot1 217 MB/s 133 MB/s 7 op/s

08:30:33 knot2 49 MB/s 7.6 GB/s 43 op/s

08:31:33 knot1 183 MB/s 94 MB/s 0 op/s

08:31:35 knot2 53 MB/s 7.8 GB/s 61 op/s

...

MELT CLI Example – Job Status
% melt job=tait.1234 status io,meta –delay=5m \

 –metrics=IO_RD_BW,IO_WR_BW,META_OP_RATE

 TIME RD_BW WR_BW MD_RATE

-------- -------- -------- --------

08:40:32 692 MB/s 0 B/s 75 op/s

08:45:33 117 MB/s 13 MB/s 33 op/s

08:50:32 0 B/s 9 MB/s 13 op/s

08:55:32 0 B/s 8 MB/s 14 op/s

09:00:33 153 MB/s 2 MB/s 47 op/s

...

MELT CLI Example - Filesystem Status
% melt fs=knot2 status io,rpc –delay=10s \

 –metrics=IO_RD_BW,IO_CLNT_DIRTY,RPC_PENDING

 TIME WR_BW CL_DIRTY RPC_PEND

-------- -------- -------- --------

08:34:16 7.7 GB/s 1.32 TB 32345

08:34:26 7.8 GB/s 1.30 TB 30178

08:34:35 7.4 GB/s 1.29 TB 29006

...

08:36:45 7.9 GB/s 91.7 GB 2456

08:36:56 3.3 GB/s 7.85 GB 913

08:37:06 127 MB/s 372 MB 123

MELT CLI Example - Filesystem Top Jobs
% melt –group=job fs=knot2 top io \

 -topk=5 –topmetric=IO_RD_BW \

 -metrics=IO_RD_BW,IO_CLNT_AVG_RD_SZ,\

IO_CLNT_AVG_RD_TIME

 JOB RD_BW RD_SZ RD_TIME

------------ -------- -------- --------

conway.2789 12 GB/s 127 MB 63.9 ms

tait.4321 7.8 GB/s 156 MB 72.3 ms

euler.22397 7.2 GB/s 112 MB 64.5 ms

tait.4334 3.4 GB/s 354 MB 283 ms

euler.22388 780 MB/s 31.9 MB 54.7 ms

MELT CLI Example - Job Performance Log
% melt –group=job -format=log fs status io \

 -delay=5m
Jan 15 11:22:33 skein melt[123]: job=tait.1111 IO_RD_BW=20M/s
IO_WR_BW=476M/s IO_CLNT_NUM=256 IO_CLNT_DIRTY=4.3G
IO_CLNT_AVG_RD_SZ=776K IO_CLNT_AVG_WR_SZ=1M ...

Jan 15 11:22:33 skein melt[123]: job=tait.1113 IO_RD_BW=89M/s
IO_WR_BW=21M/s IO_CLNT_NUM=64 IO_CLNT_DIRTY=1.2G
IO_CLNT_AVG_RD_SZ=507K IO_CLNT_AVG_WR_SZ=123K ...

Jan 15 11:22:33 skein melt[123]: job=tait.1114 IO_RD_BW=364M/s
IO_WR_BW=28M/s IO_CLNT_NUM=32 IO_CLNT_DIRTY=86M
IO_CLNT_AVG_RD_SZ=1.4M IO_CLNT_AVG_WR_SZ=67K ...

...

Jan 15 11:27:37 skein melt[123]: job=tait.1113 IO_RD_BW=52M/s
IO_WR_BW=156M/s IO_CLNT_NUM=64 IO_CLNT_DIRTY=5.5G
IO_CLNT_AVG_RD_SZ=27K IO_CLNT_AVG_WR_SZ=509M ...

Jan 15 11:27:37 skein melt[123]: job=tait.1114 IO_RD_BW=364M/s
IO_WR_BW=28M/s IO_CLNT_NUM=32 IO_CLNT_DIRTY=86M
IO_CLNT_AVG_RD_SZ=1.4M IO_CLNT_AVG_WR_SZ=67K …

SNOflake - Scalable Network Overlay
•  General-purpose overlay network infrastructure for

constructing distributed services, tools, and apps
–  bootstrapping and distributed launching

•  system-level and user-level
•  deployments spanning intra-network domains

–  peer and group communication
•  leverage advanced network capabilities (e.g., RDMA or collectives)

–  integrated, customizable data analysis and aggregation

•  Real Scalability: no changes to core design/architecture
required for use on future “extreme scale” systems

•  Real Resilience: overlay network should persist as long
as any of the constituent distributed systems are
operational

SNOflake Design Characteristics

•  Support for cross-domain overlay deployments

•  Simple yet flexible API in C
–  Session represents an overlay shared among clients
–  each Session supports many logical Services
–  each Service supports many data Streams
–  Streams used to transfer/process opaque Data Buffers, rather than

formatted Packets
–  Filter Graph instead of single filter per Stream

•  Ability to leverage advanced networking capabilities
–  incorporate layers such as the Common Communication Interface

(CCI) or the Universal Common Communication Substrate (UCCS)

SNOflake Architecture Overview

•  Deploy TBŌNs on separate resource domains
–  place Tree Managers (i.e., TBŌN roots) on hosts with inter-domain

communication capability
–  use separate trees for distinct resource classes within same distributed

system (e.g., compute, management, storage)

•  Ring of Tree Managers
–  data routing between TBŌNs
–  state replication within ring for fault tolerance

•  “SNOflake as a Service”
–  at-boot SNOflake provides bootstrap/launch service for scalable deployment

of additional SNOflake-based services, tools, and apps

SNOflake Architecture

Tree
Process

Tree
Manager

Session
Root

Session
App / Tool

Resource
Domain

MELT Architecture Overview

• Uses SNOflake overlay network for:
–  aggregating metric data into performance summaries for

each domain
–  correlating data within and across domains

• Deploys monitoring services and associated backend
agents on clients, servers, and LNET routers
–  intended as an on-boot infrastructure

MELT Continuous Monitoring

• meltmon frontend
–  controls default aggregations and sampling rates for all

the metrics
–  periodically polls the job scheduling system(s) to

associate compute nodes with jobs
•  multicasts the job=>{node,…} mappings to client agents

–  dumps aggregated metrics to logs

MELT On-Demand Investigation

• CLI tool attaches to MELT session as additional
frontend

• Tool may:
–  subscribe to existing service data streams

•  no additional transmission of performance data vs. meltmon

–  create new streams that use different metric
aggregations (e.g., to filter on a specific job)
•  performance data from backends will be sent on multiple streams

• Backends sample at the highest requested rate for
a given metric

MELT – backend data collection

• Considered methods
1.  read directly from Lustre /proc files

•  first-party, likely most efficient method
•  high development/maintenance cost (e.g., procfs to sysfs) ✖

2.  leverage Collectl Lustre plugin
•  already used at a number of sites, integrates well with other

monitoring (e.g., Ganglia)
•  ongoing support a concern
•  overhead of Perl a concern

3.  use persistent lctl and periodic queries
•  @Andreas Dilger – lctl is “the path forward” for reading metrics
•  improvements/fixes will be integrated into ongoing releases
•  overhead of third-party collection a concern

MELT – backend data collection

• Choice between collectl and lctl
• Experiment to monitor overheads on a single host

–  sample client per-OST statistics
•  polling 56 separate entries in /proc (one per OST)

–  Collectl default sampling rate is every 10 seconds
–  simulate whole-day collection (8640 total samples) by

decreasing inter-sample delay to 0
– measure walltime, CPU & memory usage

•  via /usr/bin/time, which uses wait4() to get rusage data

MELT - collectl vs. lctl overhead

0
10
20
30
40
50
60
70
80
90

1 2 3 4 5

Ti
m

e
(s

ec
on

ds
)

Trial

Time spent over 8640 samples

collectl time

melt time

0

20000

40000

60000

80000

100000

120000

140000

1 2 3 4 5

M
em

or
y

(K
B

)

Trial

Memory used over 8640 samples

collectl mem melt mem

• Collectl
–  average time per sample ~ 8.8ms
–  average CPU load 99%

•  ~ .087% scaled to normal sampling

–  maximum resident memory ~ 79MB

• MELT querying lctl
–  average time per sample ~ 6.7ms
–  average CPU load 27.2%

•  ~ .018% scaled to normal sampling

–  maximum resident memory ~ 124MB

MELT – lctl bugs and improvements

• Using a persistent lctl and periodically querying it
has revealed a few usability issues
–  no clear marker to indicate end of query response

•  have a quick fix, still need to submit patch

–  initial request determines query buffer size, so
subsequent longer requests are truncated
•  already fixed (by others) in git head

–  query command options ignored in subsequent requests

SNOflake Implementation Status

• Complete
–  bootstrapping over multiple domains
–  core communication (for base TCP sockets)
–  basic data filtering

• Under Construction
–  frontend/backend client API and request servicing
–  service-launching service

• Future Work
–  ring-state replication
–  TBON recover after overlay process failure
–  integration of advanced network abstraction layers

MELT Implementation Status

• Backend agents
–  collecting an initial set of relevant metrics
–  on clients, OSS, MDS, and LNET routers

• Metric data aggregations
–  implementing metric-specific performance summaries

(min,max,sum,avg) as data filter aggregations
–  considering other aggregations such as histograms

• Under construction
– meltmon frontend
–  CLI frontend

You’re the experts - Please advise

• Still a work-in-progress
–  you can influence delivered capabilities

• What metrics are you most interested in?
–  are there new metrics you would like added to Lustre?

• Besides instantaneous performance summaries and
a historical record of such summaries, what else?

Future Directions: Performance Alerts

• With continuous monitoring, opportunity to detect
anomalous performance and notify

• Challenges
–  what’s anomalous: need a baseline

•  for any metric that you wish to alert on

–  performance is dependent on offered load
–  changing workloads could move the baseline

Future Directions: Oracle Mode

• Assuming MELT command-line tools allow
experienced admins to find root causes of
performance problems, can we embed that
expertise in the tools

• Add a new “oracle” mode that searches for common
problems on a filesystem or server level

• Challenges
–  copying the brains of expert admins
–  what level of overhead is acceptable for oracle mode?
–  is this something you could give to users for job-level

problem diagnosis?

