
DISTRIBUTED LUSTRE

ACTIVITY TRACKING

Henri DOREAU | CEA/DAM

henri.doreau@cea.fr

CEA, DAM, DIF, F-91297 Arpajon France

LustreEco 2015

BACKGROUND

MDT changelog as a notification mechanism

The metadata servers can provide us with a stream of changelog records

Used as an asynchronous notification facility

Interested parties must subscribe (register/deregister) and poll for records

Unbalanced situations may occur…

One MDT/Numerous subscribers

One reader/Numerous MDT

typically: robinhood facing DNE

As well as clearly suboptimal ones

Ephemeral readers constantly registering/deregistering

Ephemeral readers going away for a long time before re-appearing

Readers filtering out most records

…but getting the whole stream anyway

| PAGE 2 LustreEco’15 | March 3-4, 2015

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

LUSTRE CHANGELOG MECHANISM

MDT changelog as a notification mechanism

Any client can read it

Specify start record

Loop over available records

Acknowledge for a given reader, up to a certain point (batch ack)

Specifications/Performance

Relies on lustre KUC

Up to 100k record/s/MDT (if you play fair)

| PAGE 3 LustreEco’15 | March 3-4, 2015

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

Changelog LLOG
catalog

Changelog reader

USING LUSTRE CHANGELOG

Server-side steps

Registration

 # lctl --device lustre-MDT0000 changelog_register

 lustre-MDT0000: Registered changelog userid 'cl1'

Deregistration

 # lctl --device lustre-MDT0000 changelog_deregister

 lustre-MDT0000: Deregistered changelog user 'cl1'

Client-side steps

Repeat

Start (MDT, start record #)

Recv / consume / free

Acknowledge consumed records

Stop

Until EOF

| PAGE 4 LustreEco’15 | March 3-4, 2015

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

TYPICAL USE

Robinhood policy engine

Major (single?) real-life changelog user

Follows incremental filesystem changes

Requires initial scan to populate the DB

No need to re-scan the whole namespace periodically

Lustre-rsync

Replicates all changes into a second namespace

Custom monitoring

Use lfs changelog to display records as text

Insert lines into a Logstash/Elasticsearch/Kibana system

| PAGE 5 LustreEco’15 | March 3-4, 2015

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

RECORD FORMAT EVOLUTIONS

Initial - Lustre 2.0

Single record format (struct changelog_rec)

RENAME operations required two records

Had to follow each other

Though they did not always

Difficult to process properly

Extended – Lustre 2.3 (backported to 2.1)

Introduced struct changelog_ext_rec

Added new flag, extra fields for RENAME

All records remapped as extended ones before getting delivered

Flexible – Lustre 2.7

Common header (struct changelog_rec)

Optional extensions, with corresponding flags and accessors (introduced jobid field)

Client expresses capabilities, server-side remapping if needed

Compatibility between old and new applications/clients/servers

| PAGE 6 LustreEco’15 | March 3-4, 2015

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

GOALS

Based on the existing changelog API

Broadcast the stream (publish/subscribe) to numerous unregistered clients

Distribute stream processing

Re-order the records to optimize final processing

Can drop records that cancel out each other (create/unlink patterns)

Can group records by target FID or parent FID

Offload this work from reader applications (e.g.: Robinhood Policy Engine)

More generally

Stream pre-processing

Versatile distribution scheme

Relaxed constraints on the MDS

| PAGE 7 LustreEco’15 | March 3-4, 2015

Pour insérer une image :

Menu « Insertion / Image »

ou

Cliquer sur l’icône de la zone

image

LCAP PROXY

| PAGE 8

LustreEco’15 | March 3-4, 2015

LCAP LUSTRE CHANGELOG PROXY

Stands for Lustre Changelog Aggregate & Publish

Client/Server architecture

liblcapclient

lcapd

processing modules

Essentially a Lustre changelog proxy

Seen as a single changelog reader by Lustre

Lives in userland

Re-ordering and distribution schemes implemented as loadable modules

Official CEA project

Freely distributed (https://github.com/cea-hpc/lcap.git)

| PAGE 9 LustreEco’15 | March 3-4, 2015

LIBLCAPCLIENT

As close as possible from liblustreapi

Proxified channel (default)

lcap_changelog_start()

lcap_changelog_receive()

lcap_changelog_clear()

lcap_changelog_fini()

lcap_changelog_setopt()

NULL-channel

lcap_CL_DIRECT flag to lcap_changelog_start()

Other flags mapped to their lustreapi equivalent

Functions then directly call their lustreapi siblings

Client only needs the server URI (taken from env)

| PAGE 10 LustreEco’15 | March 3-4, 2015

LCAPD

Implements all the logic

All communications based on the (excellent) Zeromq message passing library

Purpose-specific policies

| PAGE 11 LustreEco’15 | March 3-4, 2015

Processing module

MDT lcapd

Dequeue

Subscribers

Enqueue

TRANSACTION CHAIN

Transactionnal aspect remains preserved (or not, you choose)

Reader applications acknowledge records up to a given index

« cheap » local ACK

Periodically sent back to the server

Server gets informed

lcapd acknowledges records in lustre according to the loaded policy

Examples:

Can use min(acknowledgements)

Can decide to acknowledge unread records if there are no readers (broadcast)

| PAGE 12 LustreEco’15 | March 3-4, 2015

UNDER THE HOOD: MESSAGE PASSING

Lightweight message passing library

Adaptive patterns (REQ/REP, PUB/SUB, PUSH/PULL…)

Asynchronous I/O

Familiar API (close to BSD sockets)

Excellent documentation

Used for internodes and interthread communications

The lockless monster isn’t a monster anymore!

Free and actively developed software (see http://zeromq.org)

| PAGE 13 LustreEco’15 | March 3-4, 2015

UNDER THE HOOD: POLICIES

Aggregation and distribution modules

Policies implemented as modules

executed server-side

Distributed as shared libraries

Expose a pre-defined API

Enqueue records (allow re-ordering)

Dequeue records (allow distribution strategies)

Indicate up to which record # to clear server-side

| PAGE 14 LustreEco’15 | March 3-4, 2015

UNDER THE HOOD: POLICIES (2)

N collaborative threads

One changelogs reader thread per MDT

Requests push/pulled to policy worker threads

Can share nothing or operate a common data structure

| PAGE 15 LustreEco’15 | March 3-4, 2015

MDT-0000

MDT-0001

MDT-0002

lcapd Subscribers

Reader0

Reader1

Reader2

MPMC ring
buffer

Workers

UNDER THE HOOD: BATCHING

Aggregation

Policies can internally re-order records as they want

Records are batch sent to the client

Policies can decide how to deliver stream to a given client

Can group by target FID

Can group by source MDS

Can rely on simple time windowing

| PAGE 16 LustreEco’15 | March 3-4, 2015

DISTRIBUTION STRATEGIES

| PAGE 17

LustreEco’15 | March 3-4, 2015

LOAD BALANCING

| PAGE 18 LustreEco’15 | March 3-4, 2015

Distribute stream processing between two instances of robinhood

Round-robin between end readers

MDT lcapd

Subscribers

BROADCAST

| PAGE 19 LustreEco’15 | March 3-4, 2015

Replicate stream to many ephemeral readers

Publish/Subscribe mechanism

MDT lcapd

Subscribers

FILTERED BROADCAST

| PAGE 20 LustreEco’15 | March 3-4, 2015

Replicate partial stream (filter out records)

Publish/Subscribe mechanism, records not matching client filters are not delivered

MDT lcapd

Subscribers

CONCLUSION

| PAGE 21

LustreEco’15 | March 3-4, 2015

CONCLUSION

Interesting prospectives

Already proven easy to extend/experiment with

Ongoing

Recovery procedures (clients must survive a server restart)

Implement consumer groups

Implement adaptive batching

Stabilize and mature the project

Not used in production yet

Explore corner cases

Profile and optimize using at scale deployments

| PAGE 22 LustreEco’15 | March 3-4, 2015

WANT TO TRY IT?

Disclaimer: lcap is still under heavy work 

Implemented in C (kernel style, minus tabs)

Limited dependencies (lustreapi/pthread/zmq)

LGPLv3

https://github.com/cea-hpc/lcap.git

| PAGE 23 LustreEco’15 | March 3-4, 2015

https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git

THANK YOU!

ANY QUESTION?

| PAGE 24

LustreEco’15 | March 3-4, 2015

DAM Ile de France Commissariat à l’énergie atomique et aux énergies alternatives

CEA/DAM Ile de France| 91297 Arpajon Cedex

T. +33 (0)1 69 26 40 00

Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

| PAGE 25

LustreEco’15 | March 3-4, 2015

