DE LA RECHERCHE A L'INDUSTRIE

&a DISTRIBUTED LUSTRE

ACTIVITY TRACKING

Henri DOREAU | CEA/DAM
henri.doreau@cea.fr

CEA, DAM, DIF, F-91297 Arpajon France

www.cea.fr

LustreEco 2015




C2A BACKGROUND

MDT changelog as a notification mechanism

B The metadata servers can provide us with a stream of changelog records
B Used as an asynchronous notification facility
B Interested parties must subscribe (register/deregister) and poll for records

Unbalanced situations may occur...

B One MDT/Numerous subscribers
B One reader/Numerous MDT
typically: robinhood facing DNE

As well as clearly suboptimal ones
B Ephemeral readers constantly registering/deregistering
B Ephemeral readers going away for a long time before re-appearing

B Readers filtering out most records
...but getting the whole stream anyway

LustreEco’15 | March 3-4, 2015 | PAGE 2



C2A LUSTRE CHANGELOG MECHANISM

MDT changelog as a notification mechanism

B Any client can read it

B Specify start record

B Loop over available records

B Acknowledge for a given reader, up to a certain point (batch ack)
o Changelog LLOG

Specifications/Performance catalog

B Relies on lustre KUC Changelog reader

B Up to 100k record/s/MDT (if you play fair)

|
|
|
|
|
|
|
v

T

LustreEco’15 | March 3-4, 2015 | PAGE 3



C2A  USING LUSTRE CHANGELOG

Server-side steps

B Registration
# lctl --device lustre-MDT0000 changelog register

lustre-MDT0000: Registered changelog userid 'cll'

B Deregistration
# lctl --device lustre-MDT0000 changelog deregister

lustre-MDT0000: Deregistered changelog user 'cll'
Client-side steps

B Repeat
== Start (MDT, start record #)
== Recv / consume / free
== ACknowledge consumed records
= STOpP
B Untl EOF

LustreEco’15 | March 3-4, 2015 | PAGE 4



C2A TYPICAL USE

Robinhood policy engine
B Major (single?) real-life changelog user
B Follows incremental filesystem changes

== Requires initial scan to populate the DB
== NO need to re-scan the whole namespace periodically

Lustre-rsync
B Replicates all changes into a second namespace
Custom monitoring

B Use l1fs changelog to display records as text
B Insert lines into a Logstash/Elasticsearch/Kibana system

LustreEco’15 | March 3-4, 2015 | PAGE 5



C2AQ RECORD FORMAT EVOLUTIONS

Initial - Lustre 2.0
B Single record format (struct changelog rec)
B RENAME operations required two records

== Had to follow each other

== | hough they did not always

== Difficult to process properly

Extended — Lustre 2.3 (backported to 2.1)

B Introduced struct changelog ext rec

B Added new flag, extra fields for RENAME

B Allrecords remapped as extended ones before getting delivered

Flexible — Lustre 2.7
B Common header (struct changelog rec)
Optional extensions, with corresponding flags and accessors (introduced jobid field)

l
B Client expresses capabilities, server-side remapping if needed
B Compatibility between old and new applications/clients/servers

LustreEco’15 | March 3-4, 2015 | PAGE 6



Based on the existing changelog API

B Broadcast the stream (publish/subscribe) to numerous unregistered clients
B Distribute stream processing
B Re-order the records to optimize final processing
== Can drop records that cancel out each other (create/unlink patterns)
== Can group records by target FID or parent FID
== Offload this work from reader applications (e.g.: Robinhood Policy Engine)

More generally
B Stream pre-processing

B Versatile distribution scheme
B Relaxed constraints on the MDS

LustreEco’15 | March 3-4, 2015 | PAGE 7



LCAP PROXY




C2A LCAP LUSTRE CHANGELOG PROXY

Stands for Lustre Changelog Aggregate & Publish

B Client/Server architecture
== liblcapclient
== [Capd
== processing modules

B Essentially a Lustre changelog proxy
== Seen as a single changelog reader by Lustre
== Lives in userland
== Re-ordering and distribution schemes implemented as loadable modules

B Official CEA project
== Freely distributed ( )

LustreEco’15 | March 3-4, 2015 | PAGE 9



LIBLCAPCLIENT

As close as possible from liblustreapi

B Proxified channel (default)
== lCap changelog start ()
== lCcap changelog receive()
== lCap changelog clear ()
== lCcap changelog fini ()
== lCap changelog setopt ()

B NULL-channel
== [Cap_CL_DIRECT flag to 1cap changelog start ()
== Other flags mapped to their lustreapi equivalent
== Functions then directly call their lustreapi siblings

B Client only needs the server URI (taken from env)

LustreEco’15 | March 3-4, 2015 | PAGE 10



Implements all the logic

B All communications based on the (excellent) Zeromq message passing library
B Purpose-specific policies

Processing module

A

‘ ‘ Eaneue Dequeue

- —
MDT —}_ - -—F— — lcapd r —€——

— c—

Subscribers —

LustreEco’15 | March 3-4, 2015 | PAGE 11



C2A TRANSACTION CHAIN

Transactionnal aspect remains preserved (or not, you choose)
B Reader applications acknowledge records up to a given index
== « Cheap » local ACK
== Periodically sent back to the server
B Server gets informed
B [capd acknowledges records in lustre according to the loaded policy
B Examples:

== Can use min(acknowledgements)
== Can decide to acknowledge unread records if there are no readers (broadcast)

LustreEco’15 | March 3-4, 2015 | PAGE 12



C2A UNDER THE HOOD: MESSAGE PASSING

OMQ

B Lightweight message passing library

B Adaptive patterns (REQ/REP, PUB/SUB, PUSH/PULL...)
B Asynchronous I/O

B Familiar API (close to BSD sockets)

B Excellent documentation

B Used for internodes and interthread communications
== | he lockless monster isn’t a monster anymore!

B Free and actively developed software (see http://zeromq.org)

LustreEco’15 | March 3-4, 2015 | PAGE 13



C2A UNDER THE HOOD: POLICIES

Aggregation and distribution modules

B Policies implemented as modules
== €Xecuted server-side

B Distributed as shared libraries
B Expose a pre-defined API
== ENqueue records (allow re-ordering)

== Dequeue records (allow distribution strategies)
== INdicate up to which record # to clear server-side

LustreEco’15 | March 3-4, 2015 | PAGE 14



CZ2Q  UNDER THE HOOD: POLICIES (2)

N collaborative threads

B One changelogs reader thread per MDT
B Requests push/pulled to policy worker threads
B Can share nothing or operate a common data structure

<Reader0\
MDT-0000 —

< 1\
Readerl
MDT-0001 A '—} lcapd Subscribers

C N\
Reader2
MDT-0002 7 l

2!

MPMC ring
buffer

1 L

LustreEco’15 | March 3-4, 2015 | PAGE 15



C2A UNDER THE HOOD: BATCHING

Aggregation

B Policies can internally re-order records as they want

B Records are batch sent to the client

B Policies can decide how to deliver stream to a given client
== Can group by target FID

== Can group by source MDS
== Can rely on simple time windowing

LustreEco’15 | March 3-4, 2015 | PAGE 16



DISTRIBUTION STRATEGIES




C22A LOAD BALANCING

Distribute stream processing between two instances of robinhood

B Round-robin between end readers

] MDT —>- u L/\—» Icapd

Subscribers

LustreEco’15 | March 3-4, 2015 | PAGE 18



C2A BROADCAST

Replicate stream to many ephemeral readers

B Publish/Subscribe mechanism

MDT lcapd

T <

Subscribers

LustreEco’15 | March 3-4, 2015 | PAGE 19



C2A FILTERED BROADCAST

Replicate partial stream (filter out records)

B Publish/Subscribe mechanism, records not matching client filters are not delivered

- MDT —gl | lcapd

Lo

<
o = <«

&Aar <«

Subscribers

LustreEco’15 | March 3-4, 2015 | PAGE 20



CONCLUSION




C2A CONCLUSION

Interesting prospectives

B Already proven easy to extend/experiment with

B Ongoing
== Recovery procedures (clients must survive a server restart)
== I[Mplement consumer groups
== |IMplement adaptive batching

Stabilize and mature the project

B Not used in production yet

B Explore corner cases

B Profile and optimize using at scale deployments

LustreEco’15 | March 3-4, 2015 | PAGE 22



C2Aa WANTTO TRY IT?

Disclaimer: Icap is still under heavy work ©
B Implemented in C (kernel style, minus tabs)
B Limited dependencies (lustreapi/pthread/zmq)

B LGPLv3

https://github.com/cea-hpc/lcap.qgit

LustreEco’15 | March 3-4, 2015 | PAGE 23


https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git
https://github.com/cea-hpc/clap.git

THANK YOU!

ANY QUESTION?




Commissariat a I'énergie atomique et aux énergies alternatives DAM lle de France
CEA/DAM lle de France| 91297 Arpajon Cedex
T. +33 (0)1 69 26 40 00

Etablissement public & caractére industriel et commercial | RCS Paris B 775 685 019




