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Background

• Computational power of HPC systems has grown explosively
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Jaguar (2009) 
2.3 Petaflops/s

Titan (2012)
27 Petaflops/s > 10x



Background

• HPC growth allows more sophisticated scientific applications 
• Climate modeling

• Seismic hazard analysis

• Protein folding

• Fusion simulation
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Motivation

• To offset potential loss due to system failure, long-running 
applications utilize periodic checkpointing
• Per-checkpoint I/O demand increases as supercomputers grow in 

size

• MTBF is expected to reach 3-26 minutes for Exascale systems

• We can characterize execution of applications incorporating 
checkpointing as cycles of computation and I/O
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Motivation

• Improvements to I/O bandwidth fail to achieve parity with 
the rapid growth of computing power
• Upgrades to the Spider filesystem yielded only a 4x improvement 

in aggregate bandwidth (240 GB/s to 1 TB/s)

• As a result, checkpointing applications are becoming 
increasingly I/O bound
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Motivation

Can we shorten the periods of I/O?

Utilize burst buffers
• Large buffering space provisioned by high-performance storage 

devices (e.g. DRAM, SSDs)

• Rapidly offload checkpoint data, allowing the next period of 
computation to begin sooner
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Design Goals

• Rapid recovery after application restart 

• Coordinated, balanced data flushing

• Fault Tolerance
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Design

• Burst buffer system lies between processing elements and 
back-end persistent storage 
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Design

• Three software components:
• Clients 

• Reside on each compute node

• Servers
• Located on each burst buffer node
• Logically linked via a ring topology
• Each server maintains a list of its 

neighbors

• Manager
• Located on one burst buffer node
• A new manager can be elected in the 

event of a failure
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Rapid Client Recovery

• Typically, clients access checkpoint data from PFS following 
failure and restart
• Accessing PFS is expensive

• By retaining recent checkpoints in burst buffers, we can 
improve client recovery times
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Data Flushing

• Gains realized through a burst buffer system can be severely 
limited if data flushing is not handled properly
• Unbalanced workloads can result in spillover to secondary storage 

devices (e.g. SSD)

• Uncoordinated flushing can generate significant PFS lock 
contention
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Load Balancing

• Avoiding spillover to secondary storage is important for 
maximizing I/O

• To avoid spillover, a server with insufficient memory sends 
messages along the ring to identify the least-full server.

• The client is the informed of the new destination for the data
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Load Balancing Example
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Coordinated Data Flushing

• Write requests aren’t guaranteed to be of a size divisible by 
the PFS stripe size

• Each burst buffer server may have numerous noncontiguous 
data segments

• After all data has been received by the servers, the manager 
coordinates an optimum inter-server shuffling
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Data Shuffling
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Fault Tolerance

• Burst buffer servers are themselves not immune to failures
• Fault tolerance is facilitated using the ring topology

• Servers periodically synchronize with each other and the 
manager to account for failures and new joins
• Synchronization handles neighbor list updates and data replication
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Server Failure
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Server Join
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Data Replication

LustreEco 2015 20

S1

S2S4

S3

Client
1

1

1



Evaluation

• Initial evaluations conducted using the Titan supercomputer
• 128 compute nodes (burst buffer clients)

• 1 – 128 nodes allocated as burst buffer servers

• Spider II file system
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Ingress Bandwidth

• BB-IOR-Ketama
• Balanced distribution of client 

workloads to all servers

• BB-IOR-ISO
• Client writes all of its data to a 

particular server

• 2.8x improvement over IOR-SFP

• 1.7x improvement over IOR-SF
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Future Work

• Leveraging burst buffer to improve performance of read-
bound applications
• BLAST+

• Argus

• Creating an application-agnostic client API to improve 
portability
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