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Motivation 

• Data analytic workloads are becoming more 
prevalent 
–  IO patterns and storage requirements differ from 

traditional scientific workloads 
•  Read intensive 
•  Data size and IO process quantity not known a priori 

– Often characterized by a sequential indexing scan 
followed by random analysis phase 

–  Data collected from a streaming source makes 
predicting size for a given collection interval difficult 

• Determining the ideal Lustre striping parameters is 
difficult 



Dynamic Striping: A Possible Solution 

•  The ability to apply different striping parameters to contiguous 
segments of a file as it grows 
–  Initially set stripe parameters, but modify stripe parameters as the file 

grows beyond one or more thresholds (watermarks) 

•  If the file ends up being small, it is spread over a small number of 
servers and utilization is good 

•  If the file ends up being large, much of it is spread over a larger 
number of servers and contention is reduced 

•  Other potential benefits of dynamic striping 
–  Fault tolerance: adapt to OSS/OST outages by reducing stripe count 
–  Easy expansion onto newly added OSTs 

•  Hypothesis: dynamic striping on Lustre should increase 
read performance of analytic workloads where the file size is 
unknown in advance 



Experimental Method 

•  Simulate dynamic striping by splitting data file into 
segments at predetermined watermarks and store 
these segments in directories with different striping 
parameters. 

•  Evaluate using three different workloads 
–  Modified IOR 
–  A netflow analysis workload 
–  The blastn algorithm from NCBI Blast 

• Remove caching of results as much as possible 
–  Drop client page caches between runs 
–  Read large, unrelated file on each client between runs 



Simulated Dynamic Striping 
Manually split target file into  

multiple segments 
Specify different stripe_count, stripe_width,  

for each segment 



Experimental Platforms 
• ORNL ESSC Lustre Testbed 

–  Experiments had exclusive use of the Lustre filesystem 
– Workloads 

•  Modified IOR benchmark 
•  Netflow workload 

• OLCF Titan and Spider 
–  Experiment shared Lustre file system with other jobs 
– Workloads 

•  NCBI Blast 



ORNL ESSC Lustre Testbed 
• 35 nodes 

–  2 Lustre MDS 
–  8 Lustre OSS 
–  4 Lustre router (LNET) 
–  1 cluster management 
–  16 Lustre clients 
–  2 large-memory Lustre clients 
–  1 login/scheduling node 

• Software 
–  Servers: Lustre 2.5.3 with ZFS and Mellanox OFED 
–  Clients: Lustre 2.5.2 with Mellanox OFED 



ESSC Lustre Testbed - Node Hardware 

• All nodes based on Dell R720 
–  Two Xeon 2630v2 2.6GHz processors 
–  64GB RAM 
– Mellanox ConnectX-3 FDR Infiniband HCAs 

• Client RAM: some with128GB and others with 
384GB 

• MDS: 128GB RAM and 15K SAS drives for 
metadata storage 

• Connected with Mellanox SX6036 FDR IB switches 



ESSC Lustre Testbed - Storage Hardware 

• Storage consists of 8 re-purposed LSI 2680 
controller pairs 

• Each controller pair has two 12-disk shelves with 
7200 RPM SATA drives 

• Connected to OSS nodes via 8 Gb/s fibre channel 
through redundant fiber channel switches 

• Current configuration is 8 OSTs per OSS 
–  each OST is a RAID-0 zpool on top of 3 SATA drives 



IOR Benchmark Modifications 
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•  IOR modified to take 
an ordered list of paths 
with associated 
segment sizes and 
split the file is creates 
across the directories 
while abiding by the 
provided segment 
size. 

ior –a cstest –o /path1,1024G,/path2,2048G,/path3 –b 64G –t 4M



IOR Results / ZFS Cache Enabled 

0 500 1000 1500 2000 2500 

ALL : Stripe Count 4 

ALL : Stripe Count 8 

ALL : Stripe Count 16 

0-1 TB : Stripe Count 4 
1 TB+ : Stripe Count 8 

0-1 TB : Stripe Count 4 
1 TB+ : Stripe Count 16 

0-1 TB : Stripe Count 4 
1-2 TB : Stripe Count 8 
2 TB+ : Stripe Count 16 

MB/s Read Write 

Test parameters: 
•  16 testbed nodes 
•  64 tasks (4 per node) 
•  IOR block size of 64 GB 
•  Total file size 4 TB 
•  6 stripe count/watermark 

configurations; executed 
five times each 

Test results: 
•  Synthetic dynamic striping 

improves IOR sequential 
read performance 
significantly 

•  Synthetics dynamic striping 
does not hurt IOR 
sequential write 
performance 



IOR Results / ZFS Cache Disabled 
Test parameters: 

•  Same as previous 

Test results: 
•  ZFS Cache – decreased 

write performance by ~7% 
and read performance by 
about ~38% on average 

•  Synthetic dynamic striping 
still improves IOR 
sequential read 
performance significantly 

•  Synthetics dynamic striping 
does not hurt IOR 
sequential write 
performance 
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MB/s Read Write 



Stripe Count 
Xsc 
Stripe Size Xss 

Stripe Count Ysc 
Stripe Size Yss 

Stripe Count Zsc 
Stripe Size Zss 

Pseudo-Dynamic File Virtualization Layer 
{Posix Single File, Posix Multiple File, C Standard I/O Multiple File}  

Phase 1: 
•  Virtual file split into segments 
•  Each processor reads a segment 

sequentially and builds an index 

Record 
Index 

Phase 2: 
•  Each processor randomly reads 

virtual file using index information 
•  Models are produced 

Sequential IO Random IO 

Netflow Workload 



Netflow Workload Implementations 
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Synchronous Implementation

Asynchronous Implementation

Phase 1 Phase 2

Phase 1 Phase 2

Implemented two 
versions of the netflow 
workload: 

•  Synchronous -- 
corresponds to 
analysis of a static 
historical data set 

•  Asynchronous -- 
corresponds to near 
real time analysis of 
a data set being 
actively collected 



Netflow Phase 1 Results / ZFS Cache Enabled 
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MB/s Async Sync 

Test parameters: 
•  12 testbed nodes 
•  48 tasks (4 per node) 
•  56 GB Argus netflow 
•  6 stripe count/watermark 

configurations; executed 5 
times each 

•  Median result presented 

Test results: 
•  Synthetic dynamic striping 

slightly improves 
performance 

•  Less dramatic improvement 
vs. IOR likely explained by 
smaller data set and 
unaligned IO 

•  Asynchronous performance 
worse due to issues isolating 
IO time from compute time – 
being reworked 



Netflow Phase 2 Results / ZFS Cache Enabled 
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Test parameters: 
•  Same as previous 

Test results: 
•  Synthetic dynamic 

striping slightly degrades 
performance 

•  A large number (77 
million in this case) of 
small variable-length 
reads may not benefit 
from dynamic striping 



Netflow Phase 1 Results / ZFS Cache Disabled 
Test parameters: 

•  Same as previous, but 3 tests 
for each stripe count/
watermark combination 

Test results: 
•  Synthetic dynamic striping 

slightly improves performance 
•  Less dramatic improvement 

vs. IOR likely explained by 
smaller data set and 
unaligned IO 

•  Asynchronous performance 
worse due to issues isolating 
IO time from compute time – 
being reworked 

•  ZFS Caching being disabled 
reduced performance ~15% 
on average for synchronous 
implementation and was very 
similar for asynchronous 
implementation. 
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Netflow Phase 2 Results / ZFS Cache Disabled 

Test parameters: 
•  Same as previous 

Test results: 
•  Synthetic dynamic 

striping slightly degrades 
performance 

•  A large number (77 
million in this case) of 
small variable-length 
reads may not benefit 
from dynamic striping 

•  ZFS caching being 
disabled reduced 
performance ~26% on 
average for the 
synchronous 
implementation and 
~22% for the 
asynchronous 
implementation 
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OLCF Production - Titan 

• Cray XK7 supercomputer 
–  18,688 compute nodes, each with 

•  16-core AMD Opteron, 32GB host RAM 
•  NVIDIA K20 GPU with 6GB DDR5 device RAM 
•  Cray Gemini interconnect (3-D torus) 

–  432 LNET router nodes (XIO) 
•  Each handling up to 2880 MB/s of I/O traffic 
•  Connected to Spider via FDR Infiniband 



OLCF Production - Spider 

• Center-wide Lustre deployment 
– Over 25,000 clients spread across several compute and 

service resources 
–  32PB and peak I/O rate of over 1 TB/s 

• Two filesystems backed by 4 identical I/O clusters 
–  each filesystem has: 

•  14 PB usable space 
•  144 OSS, 7 OST per OSS (total of 1008 OST) 

–  each I/O cluster has: 
•  72 OSS nodes 
•  9 DDN SFA12K40 couplets 
•  560 2TB near-line SAS disks per couplet 



BLAST Sequence Alignment Workload 

Three Phases: 
1.  Identify word hits 

(seeds) 

2.  Combine “close” word 
clusters 

3.  Extend each match as 
required 



BLAST Algorithm 

Format Target Database 

Create Query Word Index 

Identify High Scoring Pairs (HSPs) 

Combine HSPs to form Seeds 

Backtrack 

Extend Seeds 

Score 

More Targets? Done 
Yes No 

Raw Target  
Seqs 

Raw Query Seq 

Formatted Target 
Seqs 

Query Word Index 

High Scoring Pairs 

Dynamic 
Programming Matrix 
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BLAST: Baseline Results w/ Static Striping 
Test parameters: 

•  8 Titan nodes 
•  64 tasks (8 per node) 
•  79 GB target database 
•  4, 16, 64 OST stripe count 
•  1MB, 2MB, 4MB stripe width 
•  Watermark: 33%-33%-33% 
•  Each executed three times 

 
Conclusions: 

•  Default striping pattern of 4 
OST with 1 MB stripes is 
non-optimal 

•  Variation between static 
striping configurations is 
small 

•  Anomalies at 16OST-4MB & 
64OST-1MB likely due to 
other HPC job executing 
simultaneously on Titan. 
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BLAST: Fixing Stripe Count or Stripe Width 
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Test parameters: 
•  8 Titan nodes 
•  64 tasks (8 per node) 
•  79 GB target database 
•  4, 16, 64 OST stripe count 
•  1MB, 2MB, 4MB stripe width 
•  Watermark: 33%-33%-33% 
•  Each executed three times 

Conclusions: 
•  Fixing Stripe Count and 

increasing Stripe Width 
decreases performance 

•  Fixing Stripe Width and 
increasing Stripe Count 
provides inconsistent 
performance 

•  Will run additional tests on 
larger number of nodes to 
increase contention 

Fixed Stripe Count 
& Increasing 
Stripe Width 

Fixed Stripe Width 
& Increasing 
Stripe Count 



BLAST: Changing Watermark Location 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

Sp
ee

du
p 

R
el

at
iv

e 
to

 D
ef

au
lt 

St
rip

in
g 

33(4/1) 33(16/2) 33(64/4) 

25(4/1) 25(16/2) 50(64/4) 

10(4/1) 40(16/2) 50(64/4) 

Test parameters: 
•  8 Titan nodes 
•  64 tasks (8 per node) 
•  79 GB target database 
•  4, 16, 64 OST stripe count 
•  1MB, 2MB, 4MB stripe width 
•  Watermarks 

•  33% - 33% - 33% 
•  25% - 25% - 50% 
•  10% - 40% - 50% 

•  Each executed three times 

Conclusions: 
•  Inconsistent trend when 

changing watermark location 
with 2 watermarks 

•  Will run additional tests to 
evaluate changing 1 
watermark location 

•  Will run additional tests on 
larger number of nodes to 
increase contention 
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Conclusions 

• Dynamic striping will likely benefit sequential read 
performance 

• Dynamic striping will likely harm performance only 
on large numbers of very small random reads 

• Much larger tests need to be done to definitively 
characterize the performance of dynamic striping, 
but given other benefits like fault tolerance and easy 
expansion, implementation should proceed. 



Questions? 

Thank You. 


