
ORNL is managed by UT-Battelle
for the US Department of Energy

Evaluating
Dynamic File
Striping for Lustre

Joel W. Reed
Jeremy Archuleta

Michael J. Brim

Joshua Lothian

Outline of Presentation

• Motivation
•  Possible Solution
•  Experimental Method
•  Experiment 1: Isolated Testbed

–  Description
–  Modified IOR results
–  Netflow workload results

•  Experiment 2: Center-wide Shared Resource
–  Description
–  Blast workload results

• Conclusions

Motivation

• Data analytic workloads are becoming more
prevalent
–  IO patterns and storage requirements differ from

traditional scientific workloads
•  Read intensive
•  Data size and IO process quantity not known a priori

– Often characterized by a sequential indexing scan
followed by random analysis phase

–  Data collected from a streaming source makes
predicting size for a given collection interval difficult

• Determining the ideal Lustre striping parameters is
difficult

Dynamic Striping: A Possible Solution

•  The ability to apply different striping parameters to contiguous
segments of a file as it grows
–  Initially set stripe parameters, but modify stripe parameters as the file

grows beyond one or more thresholds (watermarks)

•  If the file ends up being small, it is spread over a small number of
servers and utilization is good

•  If the file ends up being large, much of it is spread over a larger
number of servers and contention is reduced

•  Other potential benefits of dynamic striping
–  Fault tolerance: adapt to OSS/OST outages by reducing stripe count
–  Easy expansion onto newly added OSTs

•  Hypothesis: dynamic striping on Lustre should increase
read performance of analytic workloads where the file size is
unknown in advance

Experimental Method

•  Simulate dynamic striping by splitting data file into
segments at predetermined watermarks and store
these segments in directories with different striping
parameters.

•  Evaluate using three different workloads
–  Modified IOR
–  A netflow analysis workload
–  The blastn algorithm from NCBI Blast

• Remove caching of results as much as possible
–  Drop client page caches between runs
–  Read large, unrelated file on each client between runs

Simulated Dynamic Striping
Manually split target file into

multiple segments
Specify different stripe_count, stripe_width,

for each segment

Experimental Platforms
• ORNL ESSC Lustre Testbed

–  Experiments had exclusive use of the Lustre filesystem
– Workloads

•  Modified IOR benchmark
•  Netflow workload

• OLCF Titan and Spider
–  Experiment shared Lustre file system with other jobs
– Workloads

•  NCBI Blast

ORNL ESSC Lustre Testbed
• 35 nodes

–  2 Lustre MDS
–  8 Lustre OSS
–  4 Lustre router (LNET)
–  1 cluster management
–  16 Lustre clients
–  2 large-memory Lustre clients
–  1 login/scheduling node

• Software
–  Servers: Lustre 2.5.3 with ZFS and Mellanox OFED
–  Clients: Lustre 2.5.2 with Mellanox OFED

ESSC Lustre Testbed - Node Hardware

• All nodes based on Dell R720
–  Two Xeon 2630v2 2.6GHz processors
–  64GB RAM
– Mellanox ConnectX-3 FDR Infiniband HCAs

• Client RAM: some with128GB and others with
384GB

• MDS: 128GB RAM and 15K SAS drives for
metadata storage

• Connected with Mellanox SX6036 FDR IB switches

ESSC Lustre Testbed - Storage Hardware

• Storage consists of 8 re-purposed LSI 2680
controller pairs

• Each controller pair has two 12-disk shelves with
7200 RPM SATA drives

• Connected to OSS nodes via 8 Gb/s fibre channel
through redundant fiber channel switches

• Current configuration is 8 OSTs per OSS
–  each OST is a RAID-0 zpool on top of 3 SATA drives

IOR Benchmark Modifications

File 1
Block 0
…
Block A

File 2
Block A+1
…
Block B

File N
Block B+1
…
Block Z

…

Directory 1

Directory 2

Directory N

I
O
R

B
e
n
c
h
m
a
r
k

•  IOR modified to take
an ordered list of paths
with associated
segment sizes and
split the file is creates
across the directories
while abiding by the
provided segment
size.

ior –a cstest –o /path1,1024G,/path2,2048G,/path3 –b 64G –t 4M

IOR Results / ZFS Cache Enabled

0 500 1000 1500 2000 2500

ALL : Stripe Count 4

ALL : Stripe Count 8

ALL : Stripe Count 16

0-1 TB : Stripe Count 4
1 TB+ : Stripe Count 8

0-1 TB : Stripe Count 4
1 TB+ : Stripe Count 16

0-1 TB : Stripe Count 4
1-2 TB : Stripe Count 8
2 TB+ : Stripe Count 16

MB/s Read Write

Test parameters:
•  16 testbed nodes
•  64 tasks (4 per node)
•  IOR block size of 64 GB
•  Total file size 4 TB
•  6 stripe count/watermark

configurations; executed
five times each

Test results:
•  Synthetic dynamic striping

improves IOR sequential
read performance
significantly

•  Synthetics dynamic striping
does not hurt IOR
sequential write
performance

IOR Results / ZFS Cache Disabled
Test parameters:

•  Same as previous

Test results:
•  ZFS Cache – decreased

write performance by ~7%
and read performance by
about ~38% on average

•  Synthetic dynamic striping
still improves IOR
sequential read
performance significantly

•  Synthetics dynamic striping
does not hurt IOR
sequential write
performance

0 500 1000 1500 2000 2500

ALL : Stripe Count 4

ALL : Stripe Count 8

ALL : Stripe Count 16

0-1 TB : Stripe Count 4
1 TB+ : Stripe Count 8

0-1 TB : Stripe Count 4
1 TB+ : Stripe Count 16

0-1 TB : Stripe Count 4
1-2 TB : Stripe Count 8
2 TB+ : Stripe Count 16

MB/s Read Write

Stripe Count
Xsc
Stripe Size Xss

Stripe Count Ysc
Stripe Size Yss

Stripe Count Zsc
Stripe Size Zss

Pseudo-Dynamic File Virtualization Layer
{Posix Single File, Posix Multiple File, C Standard I/O Multiple File}

Phase 1:
•  Virtual file split into segments
•  Each processor reads a segment

sequentially and builds an index

Record
Index

Phase 2:
•  Each processor randomly reads

virtual file using index information
•  Models are produced

Sequential IO Random IO

Netflow Workload

Netflow Workload Implementations

MPI Sync Point

Master

Worker 1

Worker n

Master

Worker 1

Worker n

Master

MPI Sync Point

MPI Sync Point

Master

Worker 1

Worker n

Master

MPI Sync Point

Master

Worker 1

Worker n

Synchronous Implementation

Asynchronous Implementation

Phase 1 Phase 2

Phase 1 Phase 2

Implemented two
versions of the netflow
workload:

•  Synchronous --
corresponds to
analysis of a static
historical data set

•  Asynchronous --
corresponds to near
real time analysis of
a data set being
actively collected

Netflow Phase 1 Results / ZFS Cache Enabled

0 20 40 60 80 100 120

ALL : Stripe Count 4

ALL : Stripe Count 8

ALL : Stripe Count 16

0-10GB : Stripe Count 4
10GB+ : Stripe Count 8

0-10GB : Stripe Count 4
10GB+ : Stripe Count 16

0-10GB : Stripe Count 4
10-20GB : Stripe Count 8
20GB+ : Stripe Count 16

MB/s Async Sync

Test parameters:
•  12 testbed nodes
•  48 tasks (4 per node)
•  56 GB Argus netflow
•  6 stripe count/watermark

configurations; executed 5
times each

•  Median result presented

Test results:
•  Synthetic dynamic striping

slightly improves
performance

•  Less dramatic improvement
vs. IOR likely explained by
smaller data set and
unaligned IO

•  Asynchronous performance
worse due to issues isolating
IO time from compute time –
being reworked

Netflow Phase 2 Results / ZFS Cache Enabled

0 5 10 15 20 25 30 35 40

ALL : Stripe Count 4

ALL : Stripe Count 8

ALL : Stripe Count 16

0-10GB : Stripe Count 4
10GB+ : Stripe Count 8

0-10GB : Stripe Count 4
10GB+ : Stripe Count 16

0-10GB : Stripe Count 4
10-20GB : Stripe Count 8
20GB+ : Stripe Count 16

MB/s Async Sync

Test parameters:
•  Same as previous

Test results:
•  Synthetic dynamic

striping slightly degrades
performance

•  A large number (77
million in this case) of
small variable-length
reads may not benefit
from dynamic striping

Netflow Phase 1 Results / ZFS Cache Disabled
Test parameters:

•  Same as previous, but 3 tests
for each stripe count/
watermark combination

Test results:
•  Synthetic dynamic striping

slightly improves performance
•  Less dramatic improvement

vs. IOR likely explained by
smaller data set and
unaligned IO

•  Asynchronous performance
worse due to issues isolating
IO time from compute time –
being reworked

•  ZFS Caching being disabled
reduced performance ~15%
on average for synchronous
implementation and was very
similar for asynchronous
implementation.

0 20 40 60 80 100 120

ALL : Stripe Count 4

ALL : Stripe Count 8

ALL : Stripe Count 16

0-10GB : Stripe Count 4
10GB+ : Stripe Count 8

0-10GB : Stripe Count 4
10GB+ : Stripe Count 16

0-10GB : Stripe Count 4
10-20GB : Stripe Count 8
20GB+ : Stripe Count 16

MB/s Async Sync

Netflow Phase 2 Results / ZFS Cache Disabled

Test parameters:
•  Same as previous

Test results:
•  Synthetic dynamic

striping slightly degrades
performance

•  A large number (77
million in this case) of
small variable-length
reads may not benefit
from dynamic striping

•  ZFS caching being
disabled reduced
performance ~26% on
average for the
synchronous
implementation and
~22% for the
asynchronous
implementation

0 5 10

ALL : Stripe Count 4

ALL : Stripe Count 8

ALL : Stripe Count 16

0-10GB : Stripe Count 4
10GB+ : Stripe Count 8

0-10GB : Stripe Count 4
10GB+ : Stripe Count 16

0-10GB : Stripe Count 4
10-20GB : Stripe Count 8
20GB+ : Stripe Count 16

MB/s Async Sync

OLCF Production - Titan

• Cray XK7 supercomputer
–  18,688 compute nodes, each with

•  16-core AMD Opteron, 32GB host RAM
•  NVIDIA K20 GPU with 6GB DDR5 device RAM
•  Cray Gemini interconnect (3-D torus)

–  432 LNET router nodes (XIO)
•  Each handling up to 2880 MB/s of I/O traffic
•  Connected to Spider via FDR Infiniband

OLCF Production - Spider

• Center-wide Lustre deployment
– Over 25,000 clients spread across several compute and

service resources
–  32PB and peak I/O rate of over 1 TB/s

• Two filesystems backed by 4 identical I/O clusters
–  each filesystem has:

•  14 PB usable space
•  144 OSS, 7 OST per OSS (total of 1008 OST)

–  each I/O cluster has:
•  72 OSS nodes
•  9 DDN SFA12K40 couplets
•  560 2TB near-line SAS disks per couplet

BLAST Sequence Alignment Workload

Three Phases:
1.  Identify word hits

(seeds)

2.  Combine “close” word
clusters

3.  Extend each match as
required

BLAST Algorithm

Format Target Database

Create Query Word Index

Identify High Scoring Pairs (HSPs)

Combine HSPs to form Seeds

Backtrack

Extend Seeds

Score

More Targets? Done
Yes No

Raw Target
Seqs

Raw Query Seq

Formatted Target
Seqs

Query Word Index

High Scoring Pairs

Dynamic
Programming Matrix

Disk

Mem
First Phase

Second Phase

Disk

Disk

Mem

Mem

Third Phase

BLAST: Baseline Results w/ Static Striping
Test parameters:

•  8 Titan nodes
•  64 tasks (8 per node)
•  79 GB target database
•  4, 16, 64 OST stripe count
•  1MB, 2MB, 4MB stripe width
•  Watermark: 33%-33%-33%
•  Each executed three times

Conclusions:

•  Default striping pattern of 4
OST with 1 MB stripes is
non-optimal

•  Variation between static
striping configurations is
small

•  Anomalies at 16OST-4MB &
64OST-1MB likely due to
other HPC job executing
simultaneously on Titan.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee

du
p

R
el

at
iv

e
to

 D
ef

au
lt

St
rip

in
g

4 OST- 1 MB
4 OST- 2 MB
4 OST- 4 MB
16 OST- 1 MB
16 OST- 2 MB
16 OST- 4 MB
64 OST- 1 MB
64 OST- 2 MB
64 OST- 4 MB

BLAST: Fixing Stripe Count or Stripe Width

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee

du
p

R
el

at
iv

e
to

 D
ef

au
lt

St
rip

in
g

4/1 4/2 4/4
16/1 16/2 16/4
64/1 64/2 64/4

4/1 16/1 64/4
4/2 16/2 64/2
4/4 16/4 64/4

Test parameters:
•  8 Titan nodes
•  64 tasks (8 per node)
•  79 GB target database
•  4, 16, 64 OST stripe count
•  1MB, 2MB, 4MB stripe width
•  Watermark: 33%-33%-33%
•  Each executed three times

Conclusions:
•  Fixing Stripe Count and

increasing Stripe Width
decreases performance

•  Fixing Stripe Width and
increasing Stripe Count
provides inconsistent
performance

•  Will run additional tests on
larger number of nodes to
increase contention

Fixed Stripe Count
& Increasing
Stripe Width

Fixed Stripe Width
& Increasing
Stripe Count

BLAST: Changing Watermark Location

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Sp
ee

du
p

R
el

at
iv

e
to

 D
ef

au
lt

St
rip

in
g

33(4/1) 33(16/2) 33(64/4)

25(4/1) 25(16/2) 50(64/4)

10(4/1) 40(16/2) 50(64/4)

Test parameters:
•  8 Titan nodes
•  64 tasks (8 per node)
•  79 GB target database
•  4, 16, 64 OST stripe count
•  1MB, 2MB, 4MB stripe width
•  Watermarks

•  33% - 33% - 33%
•  25% - 25% - 50%
•  10% - 40% - 50%

•  Each executed three times

Conclusions:
•  Inconsistent trend when

changing watermark location
with 2 watermarks

•  Will run additional tests to
evaluate changing 1
watermark location

•  Will run additional tests on
larger number of nodes to
increase contention

0

500

1000

1500

2000

2500

3000

128 256 512 1024 2048 4096

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Processes

16 OSTs
64 OSTs
128 OSTs
Dynamic

Larger Blast Benchmarks

Conclusions

• Dynamic striping will likely benefit sequential read
performance

• Dynamic striping will likely harm performance only
on large numbers of very small random reads

• Much larger tests need to be done to definitively
characterize the performance of dynamic striping,
but given other benefits like fault tolerance and easy
expansion, implementation should proceed.

Questions?

Thank You.

