
ORNL is managed by UT-Battelle
for the US Department of Energy

Failure Handling

With Grace, hopefully…

Jason Hill

Storage Team Lead

OLCF, HPC Operations

3-3-2015

2 Presentation_name

Overview

• Dirty laundry
• Design decisions
• 2am stupidity
• Specific design points
• A few case studies

3 Presentation_name

Dirty Laundry

• We all have the horror stories
–  Corruption
–  Lost/destroyed files
–  Poor performance

• Why don’t we learn from mistakes?
• How can we build a better community of

administrators?

4 Presentation_name

Learning from Mistakes

• One significant roadblock to sharing is the flexibility
of Lustre
–  Hard to distill lesson learned to be applicable across all

environments
–  Sysadmins are not always proactive

• Community is small
– We’ve all seen some variant of X
–  This doesn’t help create new talent

• Lots of “dark” community members
–  Secure sites can’t share

5 Presentation_name

Learning from Mistakes

• Develop lessons learned that are passed to
management after incidents.

• Distilled from a detailed analysis of the event
–  Internal wiki document

• Don’t assign blame
–  It never helps

• Always build confidence in the team
–  This always helps

6 Presentation_name

Design Decisions

• We make strategic design decisions
–  Limit the impact of individual failures

• These are always at odds with funding sources
–  Unlimited resources == no SPOF design ?!?!

• Here’s where flexibility of Lustre makes things hard
–  Appliance
–  Vendor specific solutions
–  “roll your own”

7 Presentation_name

Design Decisions

• No Single Point of Failures
• Limit component types
• Diskless provisioning
• Don’t duplicate services

8 Presentation_name

2am Stupidity – a Design Principle

•  It’s not just for college students!
• Our design considerations take this into account
• KISS – not the rock band!
• Limited hardware variation helps here
• You’re never a rocket scientist when you get woken

up

9 Presentation_name

Specific Design Points

• Worth reiterating: No SPOF’s
–  Look at your storage subsystem closely
–  You have the least control inside of it

• Multiple paths from storage to servers
–  This is hard with embedded
–  Unless the product does it for you!

• Every OSS should be the same
–  Spare pool should match too!

10 Presentation_name

Specific Design Points

• Understand your transport
– We’re pretty good with IB and Seastar/Gemini
–  Not great at TCP LND

• Configuration Management
–  Every node gets the same specification

• Centralized Syslog
–  Notifications from parsing

11 Presentation_name

Case Study #1

• DDN 9900 storage system
–  5 disk enclosures, 2 controllers, 4 OSS nodes

• Disk replacement around noon
•  IOM failure around 1:30am
• Does anyone see the problem?

12 Presentation_name

Case Study #1

•  If the IOM had failed in the same enclosure as the
rebuilding disk we’re in the clear

• …but it didn’t.
• Controller keeps a journal to replay, but it’s not

persistent across reboots.
• But the only thing that made sense at the time is to

reboot the controllers
–  They don’t really report failed IOMs well

13 Presentation_name

Case Study #1

• Now we’re in real trouble.
• Mistake #??

– We didn’t involve our Lustre support team soon enough.
–  Engaged HW support early on (++good)

• Where do we go from here?
–  Job scheduling paused for ~12 hours
–  Interactive logins are having problems
–  Tickets rolling in to help desk
– Management getting calls from program managers…

14 Presentation_name

Moving forward…

• Remove the OST from the filesystem so users stop
getting IO hangs and only get IO errors
–  lctl conf_param {OST name}.osc.active=0

• While debugging the storage issue we ran some
e2fsck’s
–  Allowed it to make some changes
–  CTRL-C’d it about 100k changes in
–  So we’re in a real pickle!

15 Presentation_name

Moving forward…

• Uncovered a bug in e2fsck
– Got that fixed, but how to test?

• Luckily we had some storage laying around
–  Exact HW and configuration of problem HW

• Write a simple netcat server/client program to dd
the data off the bad OST onto 21 separate targets
–  Planned on things not going well the first time

• While this is going on we use lfs find --obd
–  Took 6 days to list the files on this OST
–  ~1 million files

16 Presentation_name

Moving forward…

• Several runs of e2fsck later we think things will
work.
–  But we have pristine copies of the data to put back in

place if it doesn’t!

• Run e2fsck; cross fingers; close eyes…
• And it worked!
• Sort of..

17 Presentation_name

The next problem

• The underlying filesytem (ext3/ldiskfs) is in order.
• The upper level filesystem has problems

–  Data blocks are not linked to the bitmaps anymore

• Re-enable the OST
–  lctl set_param osc.<fsname>-<OST name>-*.active=1

18 Presentation_name

The next problem

• We have the listing of files on the OST
• Now we need to figure out if the file(s) touched that

OST
–  Lots of files have less than full stripe count

• Found that ~900k files didn’t actually touch that
OST
–  Another way to read that - ~90% of files that were part of

the 4 OST stripe were less than 4MB

• Now turn focus to the remaining files

19 Presentation_name

We’re almost there!

• Timeline: We’re at day 6
• All files that had data on the OST were read using

dd
•  If file returned IO error, it was removed with unlink

–  rm calls stat; stat call fails on IO error..

• Send list of files affected to the users so they know
what we deleted.

• Write after-action report and meet with managers
• Sleep…

20 Presentation_name

Case Study #1 - Summary

•  “triple disk failure”
• ~1.1M files affected
• 7 days of downtime for that OST
• 50k files deleted because they were damaged
• List of Lessons Learned

–  Always engage HW support before rebooting anything.
–  Engage SW support quickly
–  e2fsck –fy is **not** your friend
– Go the extra expense, 10 trays for safety

21 Presentation_name

Case Study #2

• How upgrades can go horribly, horribly wrong
• Background
• Lustre 2.4 Servers; Lustre 1.8.6 clients
• The plan: Upgrade clients to Lustre 2.4.0
• The problem: synthetic benchmarks don’t mirror

user activity and our biggest problem doesn’t come
close to meeting the users ability

22 Presentation_name

Case Study #2

• For ~4 months take test shots with all of Titan using
home-built Lustre 2.4.0 client
–  Some patching, not much

• Benchmarks
– Mdtest, IOR, S3D

• So we had a user application in there!
– We’re not users or domain experts
– We weren’t running it right

23 Presentation_name

Cronology

• September 30, 2013, Put 2.4.0 (with patches) FS
into production with 1.8.6 clients and some 2.4.0
clients

•  January 7, 2014 FS is made primary, existing 1.8.6
is marked as read-only

•  January 10 – first report of “slowness” comes in
•  January 28 – 1.8.6 FS is removed from all compute

platforms.
•  January 30, first downtime because MDS became

unresponsive

24 Presentation_name

Trust your monitoring

• Extremely high MDS loads began shortly after 1.8.6
FS went read only.
– We increased the Nagios check threshold
–  Figured increased cores on the MDS, needed to change

the value
– We were wrong

• MDSTrace wasn’t helping
– Only saw normal activity
– We missed some new RPC’s for Lustre 2.X

25 Presentation_name

The problem

• Wide Striping
–  A feature we paid for
–  A feature we ended up developing and testing in-house
–  A feature we merged into the mainline code
–  A feature we failed to test during our 4 months of testing

• Most of the testing was done on a filesystem that
didn’t have more than 500 OST’s
–  Seems to be >680 OSTs where we start to see the

problem.

26 Presentation_name

vmalloc vs. kmalloc

•  kmalloc requests contiguous memory only, fails if
the size you request isn’t available.

•  vmalloc uses the virtual memory maps in the kernel
to grant non-contiguous pages that look like
contiguous pages.

• Since vmalloc uses the virtual memory maps, it
uses a global spin lock to keep operations atomic

• Lustre defines the break point of 16k to be when it
requests either kmalloc or vmalloc

27 Presentation_name

What does this have to do with anything?

• MDS reply buffer allocated based on the number of
OST’s in the file
–  But default behavior is to be aggressive and not need to

re-request or expand the size of a buffer
–  So assume the largest buffer possible based on Lustre

config

• 32 byte header plus 24 bytes * # of OST’s
• Cross the 16k threshold at 680 OST
• Production filesystems at OLCF have 1008 OST’s

28 Presentation_name

How did we figure this out?

• We engaged our support vendor who sent on-site
staff

• We got all of our hands on deck
• We all met in the same room and debugged
• Our developer and their developer started talking
• A few key observations made
• Patch was written and tested on test system then

sent to Gerrit

29 Presentation_name

LU-4008

• Every stat call was generating a vmalloc.
•  ls –l in a directory of 50,000 files generates 50,000

vmalloc’s
• Even if the file is only striped across 4 OST’s
• Don’t see this if filesystem has less than 680 OST

– Our testing configuration didn’t

• Detailed analysis showed several calls
–  getattr, layout lock intent, LOV_EA reply buffer

30 Presentation_name

LU-4008 implementation

• Applied 2 patches (find them in LU-4008)
• Tested with a few user codes, put in production for

bake
• Start looking at our testing rigor
• Why don’t we have real apps in our IO testing?
• We’re not domain scientists, don’t know how to run

the app, don’t know what a good problem size is
• Don’t know what mix of apps to run in a diverse

workload (production) simulation

31 Presentation_name

IO workload harness

• Paper being presented at CUG in April
• Not going to steal their thunder
• We use this workload every time we test a patch or

new version of Lustre
• Compare application runtime and IO performance of

each app across runs to look for deviations
• Has been a very big asset
• Took ~1 year to build

32 Presentation_name

Case Study #2 - Summary

• Locking in Lustre is hard
• Scale exacerbates problems that may not exist at

smaller scale
• Monitoring is good, but need to be sure you’re

getting the whole picture
• Sometimes it takes getting all the right people in the

room while the problem is happening
• Building an IO harness is very site specific but

extremely useful

33 Presentation_name

Summary

• Handle failures without looking like a chicken with
your head cut off

• Take the time to fully understand the problem
• Where possible design (and fund!) around lessons

learned
• Make sure your 8am brain is on
• Open communication with your users and

management is essential

34 Presentation_name

Questions?

