
An Introduction to fileUtils

Feiyi Wang (Ph.D)

National Center for Computational Sciences

Oak Ridge National Laboratory

March 3, 2015

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 1 / 23

Outline

1. Overview

Motivation

Solution Pattern: Master/Slave and Work Stealing

The Theory: Distributed Termination Detection

2. libcircle API and Examples

3. Design Considerations

Treewalk and Progress

Division of Labor: the Granularity

Parallel Integrity Check

Preserving Attributes

4. Performance Discussion

5. Summary

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 2 / 23



Overview Motivation

Motivation

Most traditional file system tools are serialized.

Some are multi-threaded, bounded by single host performance.

What we need: parallelization that can go beyond single host.

Existing tools:

traditional cp, find …

multi-threaded: bbcp, xdd

cross-cluster: grid-ftp

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 3 / 23

Overview Motivation

What is fileUtils?

One of a suite of parallel tools produced by collaboration between LLNL, LANL

and ORNL.

Origin: LaFon, Misra and Bringhurst: “On distributed File Tree Walk of Parallel

File System”.

fileUtils suite

dcmp - compare files

dcp - copy files

dfind - find files by path name

drm - remove files

dtar - create file tape archives

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 4 / 23

cp
find
bbcp
xdd
grid-ftp


Overview Solution Pattern: Master/Slave and Work Stealing

General Idea

From tools perspective, we need a parallel tree-walk algorithm. The essence

of such algorithm is to efficiently visit each file in parallel. If such general

problem can be resolved, then it can be applied to:

file copy

file delete (purge)

file checksum (ls -l)

file find

. . .

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 5 / 23

Overview Solution Pattern: Master/Slave and Work Stealing

How to distribute the workload?

A simple but naive solution:

Slave 1 Slave 2 Slave 3 Slave N

Master

/path/to/traversal/root

query
response

Problem:

centralized

unbalanced

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 6 / 23



Overview Solution Pattern: Master/Slave and Work Stealing

Jharrod Lafon: centralized heat map

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 7 / 23

Overview Solution Pattern: Master/Slave and Work Stealing

Jharrod Lafon: distributed heat map

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 8 / 23



Overview Solution Pattern: Master/Slave and Work Stealing

Pattern: Work Stealing

Key Ideas

Each worker maintains it own work queue

When local work queue is processed, it picks a random worker, and asks

for more work items.

Without a master process, how do we know when to terminate?

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 9 / 23

Overview The Theory: Distributed Termination Detection

Distributed Termination Detection

Edsger W. Dijkstra: Derivation of a termination detection algorithm for distributed

computations. June 10, 1983.

1 The system in consideration is composed of Nmachines, n0, n1, . . . , nN−1, logically ordered

and arranged as a ring. Each machine can be either white or black. All machines are initially

colored as white.

2 A token is passed around the ring. machine n’s next stop is n+ 1. A token can be either white

or black. Initially, machine n0 is white and has the white token.

3 A machine only forwards the token when it is passive (no work)

4 Any time a machine sends work to a machine with lower rank, it colors itself as black.

5 Both initially at n0, or upon receiving a token:

1 if a machine is white, it sends the token unchanged.

2 if a machine is black, it makes the token black, makes itself white, and forward the token.

Termination condition: white n0 receives a white token.

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 10 / 23



Overview The Theory: Distributed Termination Detection

Understanding the Algorithm

Stable state is reached when all machines are passive.

Edge case: a system is composed of one machine: it will send a white token to itself, thus it meets

the termination condition, also it reaches the stable state.

Even a machine becomes passive at time t and forward the token, it can become active again upon

receiving works from others.

When a black token returns to machine n0 or a white token returns to a black machine n0, a

termination conition can not be met. The token forwarding continues.

P0

P1

P3

P4

P2

Initial State

P0

P1

P3

P4

Send work to j < i
turn black

P2

work

P0

P1

P3

P4

Color token black 
if itself is black

P2

P0

P1

P3

P4

P2 forwards the token,
color itself white

P2

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 11 / 23

libcircle API and Examples

libcircle API

dwalk
1 // Initialize state

2 CIRCLE_init(0, NULL, CIRCLE_SPLIT_EQUAL);

3
4 // Register callback

5 CIRCLE_cb_create(& walk_stat_create);

6 CIRCLE_cb_create(& walk_stat_process);

7 CIRCLE_cb_reduce_init(& reduce_init);

8 CIRCLE_cb_reduce_op(& reduce_exec);

9 CIRCLE_cb_reduce_fini(& reduce_init);

10
11 // After setting up, execute

12 CIRCLE_begin();

13
14 // Finally, clean up

15 CIRCLE_finalize();

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 12 / 23

libcircle


libcircle API and Examples

dwalk Callback

1 void walk_stat_create(CIRCLE_handle * handle) {

2 handle->enqueue(CURRENT_DIR);

3 }

4
5 void walk_stat_process(CIRCLE_handle * handle) {

6 struct stat st;

7 handle->dequeue(path);

8 int status = lstat(path, &st)

9 if (S_ISDIR(st.st_mode)) {

10 DIR * dirp = opendir(path);

11 while (1) {

12 struct dirent * entry = readdir(dirp);

13 handle->enqueue(entry->d_name);

14 }

15 ...

16 closedir(dirp)

17 }

18 }

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 13 / 23

libcircle API and Examples

Parallel Copy: A More Involved Example

In a nutshell, there are four stages of parallel copy:

tree walk recursively walk the tree hierarchy until you reach to the leaf

node, which is the actual files to be copied.

OR

walk the tree first before doing actual copying.

copy breaking up a large file into chunks and enq for processing.

clean up set permission, owner, timestamps etc.

compare check the data integrity.

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 14 / 23

dwalk


Design Considerations Treewalk and Progress

Tree Walk and Progress Report

User wants to know the progress, in particular when doing a large data

transfer that could take more than a few hours. For example, during Spider 1

to Spider 2 transition.

Yet, this can be difficult in a fully distributed task setup environment.

Solution

reduce() callback

0

1 2 3

4 5 6 7 8 9

reduce 
request

reduce 
request

reduce 
response

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 15 / 23

Design Considerations Division of Labor: the Granularity

Copy and Parallel Granularity

file 1

file 2

file N

chunk 1 chunk 2

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 16 / 23

reduce()


Design Considerations Parallel Integrity Check

Verification

In the past:

fileUtils provides a dcmp utility that can do source and destination

comparison.

dcp used to have a internal compare function, which was later deemed

unreliable.

The design issues:

We need to close the destination file handle to make sure the data is

committed, from application point of view.

We do NOT want to re-read the source from the disk.

We want to parallelize the verification process, if possible.

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 17 / 23

Design Considerations Preserving Attributes

Preserving Attributes

There are 4 types of attributes we need to consider:

ownership

permission bits

timestamp

extended attributes

The extended attributes are important for preserving Lustre stripe

information. The basic steps:

mknod() while doing the treewalk.

llistxattr() to get list of names of the attributes.

lgetxattr() and lsetxattr() to get and set the attributes.

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 18 / 23

fileUtils
dcmp
dcp
mknod()
llistxattr()
lgetxattr()
lsetxattr()


Design Considerations Preserving Attributes

Pythonic API: BaseTask

1 class BaseTask:

2 __metaclass__ = ABCMeta

3
4 def __init__(self, circle):

5 self.circle = circle

6 self.rank = circle.rank

7
8 @abstractmethod

9 def create(self):

10 pass

11
12 @abstractmethod

13 def process(self):

14 pass

15
16 @abstractmethod

17 def reduce(self):

18 pass

19

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 19 / 23

Design Considerations Preserving Attributes

Pythonic API Example

pcp main
1 circle = Circle(reduce_interval=5)

2
3 # first task

4 treewalk = PWalk(circle, src, dest)

5 circle.begin(treewalk)

6 circle.finalize()

7
8 # second task

9 pcp = PCP(circle, treewalk, src, dest)

10 circle.begin(pcp)

11 circle.finalize()

12
13 # third task

14 pcheck = PCheck(circle, pcp)

15 circle.begin(pcheck)

16 circle.finalize()

17

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 20 / 23

BaseTask


Performance Discussion

DCP Usage

mpirun -np 8 dcp -R -p /my/src/dirA /my/dest/dirB

-R: copy directory recursively

-p: preserve original file attributes (owner, group, permission) as well as

Lustre striping information.

For more complete description and batch script example:

https://www.olcf.ornl.gov/kb_articles/transferring-data-with-dcp/

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 21 / 23

Performance Discussion

Performance

DCP performance depends on a variety of factors: number of parallel

processes, number of files, depth of directory, file size, and current I/O loads

etc.

DCP-Atlas-Throughput

Page 1

Throughput DCP Atlas 1000 files (MB/s)

Nodes 10M 100M 1G 10G

1 5.97 83.97 418.16 641.03

2 11.48 122.54 738.98 1270

3 15.43 161.38 1110 1750

4 17.71 200.43 1380 2320

5 19.14 219.47 1130 2710

6 22.31 239.58 1290 3160

7 21.78 222.56 1650 3490

8 23.94 221.73 1470 3740

9 23.41 216.74 1730 3840

10 19.57 222.49 1570 4250

11 21.79 226.26 1680 3780

12 22.36 225.14 1640 4330

13 16.78 196.97 1490 4740

14 18.9 160.86 1370 4510

15 18.76 159.79 1090 4380

16 18.34 162.2 964.71 5020

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0

1000

2000

3000

4000

5000

6000

Throughput DCP Atlas 1000 files

10M

100M

1G

10G

Nodes

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

10M 100M 1G 10G

0

1000

2000

3000

4000

5000

6000

Throughput DCP Atlas 1000 Files 

2

4

6

8

10

12

14

16

Test Size

T
h

ro
u

g
h

p
u

t 
(M

B
/s

)

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 22 / 23



Summary

Summary

fileUtils builds on the fundamental concept of doing workload

distribution by work stealing.

fileUtils can also be seen as an example of runningembarrassingly

parallel jobs on a large-scale MPI-based platform.

With the right amount of abstraction - the circle API and associated

services may have the potential to provide a Hadoop (map/reduce) like

interface for the scientists.

Feiyi Wang (NCCS/ORNL) An Introduction to fileUtils March 3, 2015 23 / 23

fileUtils
fileUtils

	Overview
	Motivation
	Solution Pattern: Master/Slave and Work Stealing
	The Theory: Distributed Termination Detection

	libcircle API and Examples
	Design Considerations
	Treewalk and Progress
	Division of Labor: the Granularity
	Parallel Integrity Check
	Preserving Attributes

	Performance Discussion
	Summary

