

1

Distributed File Recovery
on the Lustre Distributed File System

J. Albano, R. Seker, R. Babiceanu, S. Oral*

albano.justin@gmail.com, {sekerr|babicear@erau.edu},	oralhs@ornl.gov	

Department of Electrical, Computer, Software & Systems Engineering
Embry-Riddle Aeronautical University – Daytona Beach Campus, Daytona Beach, FL

*Oak Ridge National Laboratory, Oak Ridge, TN

Abstract
With the advancement of cloud-computing

technologies and the growth in distributed software
applications, a great deal of research that has been
focused on the concepts and implementations of distributed
file systems to support these application. Since its inception
in 1999 by Peter Braam at Carnegie Mellon University, the
Lustre distributed file system has gained both the technical,
as well as financial interest of some of the largest
technology entities, including Oracle, Seagate, Intel, Oak
Ridge National Laboratory, and OpenSFS. With this
immense backing, Lustre has been incorporated in over
60% of the TOP100 high performance computers in the
world and is slated to significantly increase this market
share. Although the Lustre file system itself has seen a
sharp increase in research since its infancy, support for
many of the fields surrounding the file system has been
greatly lacking. Primary among these deficiencies is file
recovery on the Lustre file system. This paper attempts to
fill this gap and provides a simplified solution which is
then developed into a distributed solution that can scale to
meet the needs and requirements of various sizes of Lustre
file system deployments. While this paper focuses on the
Lustre file system, the concepts and solution provided in
this paper can be used on any similar metadata-based
distributed file system. Although this paper does not
provide an implementation of this solution, a complete
solution architecture is provided, enabling further research
and implementation.

1 Introduction
In the past two decades, the software industry has

experienced an explosive growth in cloud computing and
distributed software technology, and with this expanse,
there has been a subsequent need to research and
implement supporting infrastructure technologies,
particularly file systems. While networked file systems
have been a part of software infrastructure since the

inception of the File Access Listener (FAL) in 1976, which
would serve as the forerunner for the Network File System
(NFS), these file systems fail to meet the growing need of
distributed software to provide the vast throughput needed
by these large-scale systems [1]. In essence, the file system
has become to the distributed software application what the
hard drive was during the age of hard disk drives: The
underlying bottleneck that dictates a large portion of the
Input/Output (I/O) performance characteristics of the
system. In order to resolve this issue, a file system based on
distributed technologies and principles was needed.

 This need led to a plethora of distributed file systems,
foremost among them, the Lustre Distributed File system.
Created in 1999 by Peter Braam of Carnegie Mellon
University, Lustre has soared in popularity in its nearly
two-decade lifespan, experiencing interest by Sun
Microsystems, Intel, Seagate, Oak Ridge National
Laboratories, and a host of other large sponsors during this
time. Leveraging this popularity, Lustre has now achieved
more than a 60% market share in the TOP100 high
performance computers (HPCs) and is slated to increase its
growth in both the military and commercial software
sectors in the coming years [2].

Even with this enormous growth, research is still
lacking in supporting concepts, including file system
forensics. In particular, the research surrounding the
recovery of deleted files from the Lustre distributed file
system, and metadata-based file systems in general, is
sparse. Therefore, the research contained within this paper
is intended to serve the purpose of filling this gap and
provide a solution architecture that can be implemented to
solve the problem of distributed file recovery.

Section 2 provides an introduction to the technical
aspects that make up the Lustre file system, as well as
background knowledge about the concepts (such as
metadata-based distributed file systems) that will be
essential to the understanding of the solution presented in
this paper. Likewise, a brief history of the Lustre file
system is also included to provide the historical and
technological context of Lustre.

2

Section 3 presents the problem context for file
recovery on the Lustre file system and describes a basic,
conceptual solution that will later be used as the stepping
stone for the distributed solution to the same problem. This
solution leverages the existing technologies available for
localized file recovery and treats the problem of distributed
file recovery as a composite of multiple, localized file
recoveries.

Section 4 leverages this conceptual model to create a
distributed solution to the file recovery problem on Lustre,
allowing the solution to scale to meet the needs of the
particular Lustre cluster on which the recovery is being
performed. This distributed solution also resolves many of
the disadvantages of the conceptual solution.

The conclusion section provides an overarching
description of the limitations and applicability of the
solution described in section 4 and provides additional
resources such as tested code examples that support the
distributed solution presented in this paper.

2 Lustre File System
The Lustre file system is a metadata, object-based

distributed file system that is capable of providing
petabytes of storage and terabytes of aggregate I/O over a
disperse network [3]. After the creation of Lustre in 1999,
Peter Braam acquired Lustre under his company, Cluster
File Systems (CFS); CFS was later purchased by Sun
Microsystems in September of 2007 [4]. In April 2010,
Oracle bought out Sun Microsystems, and thus acquired the
Lustre file system [5]. In December of the same year,
Oracle announced that it would discontinue long-term
support for Lustre, and in response, Whamcloud and Open
Scalable File Systems (OpenSFS) were created in order to

continue to the development of Lustre [6], [7]. Supporting
this initiative, Xyratex Ltd., a Seagate affiliate of whom
Peter Braam joined in late 2010, purchased the intellectual
property for Lustre and later donated the lustre.org
domain name and logo to the open source community [8].

Although Lustre has switched ownership numerous
times over its lifetime, the foundational concepts of this
distributed file system have remained largely constant.
Lustre is an object-based file system that divides a single,
contiguous file into multiple portions called objects. These
objects are then stored on various storage nodes across a
Lustre cluster, allowing the once-singular file to be
accessed and modified in a parallel manner. For example, if
a file is divided into three parts, all three parts can be read
in parallel to reconstruct the file, analogous to the
technique used in Redundant Array of Independent Disks
(RAID) 0 configuration.

In order to record the location of these objects in a
Lustre cluster, there are two major techniques available to
date: (1) a functionally deterministic algorithm or (2) a
metadata service. Although deterministic functions for
mapping objects of a file to storage nodes, such as
Controlled Replication under Scalable Hashing (CRUSH),
are a well-researched means of achieving this mapping,
Lustre implements a persistent record of object mappings
using a metadata service. This metadata service simply
records the mapping of each object to its associated object
storage node, where the key of the mapping is the object
identifier and the value is the identifier of the
corresponding object storage node.

The components, and there corresponding points of
interaction, are illustrated below in Figure 1.

The client is the component that interfaces with the
end-user of the Lustre file system and implements the

Figure 1. A Lustre cluster is divided into clients, which interface with the end-user, MGS/MGT pairs that store configuration data,
MDS/MDT pairs that store metadata, and OSS/OST pairs that store the objects that compose files.

3

Linux Virtual File System (VFS) interface in order to
provide this abstraction (this implementation is referred to
as Lustre Lite, or llite). The Management Server (MGS)
and Management Target (MGT) pair stores the
configuration data about a Lustre cluster, and although this
pair is important in the context of establishing a Lustre
cluster, this paper does not focus on this pair. The Metadata
Server (MDS) and Metadata Target (MDT) manage and
store the metadata for the Lustre file system, respectively.
The Object Storage Server (OSS) manages a series of
Object Storage Targets (OSTs), where the objects
associated with a file are striped across one or more OSTs.
Note that each OSS can manage multiple OSTs, and that all
interactions with the OSTs are performed through its
corresponding OSS (the OSS serves as a proxy for its
associated OSTs).

In order to store the metadata for a file, the MDS
stores a shell of an inode on the MDT, where the direct and
indirect block references of the inode are unused (since the
data for the file does not exist locally on the MDT, but
rather, on the OSTs) and the extended attributes of the
inode are used to store the metadata for a file in the Lustre
file system. The exact metadata stored in these Layout
Extended Attributes (Layout EAs) are better understood in
the context of the striping algorithm implemented by the
Lustre file system.

A. Striping a File

The striping in a Lustre cluster is accomplished using a
round-robin algorithm parameterized by the number of
OSTs to stripe across (stripe count1) and the number of
bytes written in each stripe (stripe size) [9]. Starting with
the first OST, 𝑛 bytes are written to the object
corresponding to the file to be written on the OST, where 𝑛
is equal to the stripe size. Once completed, 𝑛 bytes are
written to the object on the next OST. This process
continues until the all bytes of the file have been written, or
each OST has been written to exactly once; in the latter
case, writing continues from the first OST and continues
using the same algorithm previously described. Note that
only one object exists on each OST for a given file and the
object exists on each OST as a file on the local file system
of the OST (sometimes referred to as the backing file
system).

More succinctly, there is a one-to-one mapping
between the objects that make up a file and the OSTs on
which the objects are stored. Each object contains stripes
𝑖, 𝑖 + 𝑘, 𝑖 + 2𝑘,…, where 𝑖 is the index of object and 𝑘 is
the stripe count. For example, if a 40 𝑀𝐵 file is striped
with a stripe size of 5 𝑀𝐵 and a stripe count of 3, the
resulting striping scheme would resemble the following:

𝑜𝑏𝑗𝑒𝑐𝑡! → {𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!}
𝑜𝑏𝑗𝑒𝑐𝑡! → {𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!}
𝑜𝑏𝑗𝑒𝑐𝑡! → {𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!}

1 Note that stripe count does not refer to the number of stripes, but
rather, the number of OSTs that a file is striped across.

Note that each object does not necessarily contain the same
number of stripes, and in general, each file in a Lustre file
system can have a different stripe size and stripe count than
the other files in the same file system.

B. Accessing a File

Using this scheme, there are three main steps that a
client must perform in order to access a file [9], [10]:

1. Obtain file metadata: the client obtains the

metadata for the file from the MDS
2. Retrieve each object: using this metadata, the

client retrieves each object that makes up the file
from the OSTs storing these objects (this retrieval
is performed through the OSSs associated with
each of the OSTs on which an object is stored)

3. Reconstruct file: using the metadata and the
objects retrieved from the OSTs, the client can
reconstruct the singular, contiguous file from its
constituent objects

Using the these steps, the client component is capable of
providing an end-user with the façade of a contiguous file,
while in reality, the file is actually distributed in the form
of objects across multiple OSTs in the Lustre cluster. While
this basic procedure is the most common use case in the
normal operation of Lustre, this paper also focuses on the
use case performed when a file is deleted.

C. Deleting a File

Deletion, or unlinking, of a file in the Lustre file
system requires two main steps [10]:

1. Delete each object: the object files containing the

stripes of the file to be deleted are deleted from
the local file system of their corresponding OSTs

2. Delete metadata: the inode containing the
metadata associated with the file to be deleted is
deleted from the MDT storing the inode

Once the object files and metadata inode for a Lustre file
are deleted from the OSTs and MDT, respectively, the file
considered to be deleted from the Lustre file system.
Although it appears as though the objects and metadata
inode are permanently deleted, they are only deleted in the
sense that a file is deleted from a local file system in a
localized (non-distributed) system. Using this knowledge,
the recovery of a file on the Lustre distributed file system
can be viewed as multiple recoveries of local files from a
local file system and therefore, existing localized file
recovery techniques can be used to recover and reconstruct
a deleted file in the Lustre file system.

4

3 Conceptual Solution
Based on the steps in the deletion use case described in

the previous section, recovery of a file from the Lustre file
system entails the recovery of the metadata associated with
the Lustre file, and the subsequent recovery of each of the
objects associated with the file. Once the metadata and
objects have been recovered, the once-deleted file can be
reconstructed, resulting in the complete, recovered file.
Viewed differently, the recovery of a file mimics the use
case for accessing a file in the Lustre file system, but
before the metadata and objects are retrieved, they must be
recovered from the MDT and OSTs, respectively.

Therefore, the steps involved in recovering an
unlinked file from the Lustre file system are as follows:

1. Recover and obtain file metadata: the agent

recovering the file must first recover the metadata
from the MDT and then store the recovered
metadata for later use

2. Recover and retrieve each object: utilizing the
recovered metadata, the OSTs on which the
objects for the unlinked files exist can be
discovered; the objects associated with the
unlinked file are then recovered from their
respective OSTs and stored on the recovery agent

3. Reconstruct file: using the recovered metadata
and objects, the unlinked file can be reconstructed,
thus recovering the file

Due to the trinary nature of this solution, it is termed the
Three-Step Recovery Solution. Although the details of
each steps in the Three-Step Solution have not yet been
elaborated, logic already exists for the implementation of a
component capable of performing each task.

In the case of the recovery of the metadata from the
MDT, the metadata stored on the MDT exists in the form
of an inode on the local file system of the MDT, and
therefore, the recovery of the metadata from the MDT
amounts to the recovery of an inode from a local file
system. Numerous solutions to this problem already exist
in digital forensics and the particulars of local inode
recovery are not discussed further; rather, the logic capable
of recovering the local inode is abstracted into a component
called the Abstract Metadata Recovery Tool (AMRT),
which can be used by the recovery agent to recover the
metadata for a file based on a supplied, unique identifier
for the file2.

In much the same way, the objects required to
reconstruct the recovered file exist on the local file systems
of the OSTs. Therefore, the recovery of each object from
its corresponding OST amounts to the recovery of a file

2 File Identifiers (FIDs) are used in the Lustre file system to
uniquely identify files at a global level in the file system
(uniquely between all OSTs in a Lustre file system) and therefore,
these FIDs are a natural fit for the unique means of identifying the
file to recover [9].

from the local file system of the OST. In the same manner
as this problem has already been solved for the recovery of
an inode from the local file system of the MDT, a great
deal of research (and implemented tools) has been devised
for the recovery of a file from a local file system.
Therefore, this logic is abstracted into the Abstract Object
File Recovery Tool (AOFRT), which can be used by the
recovery agent to recover the objects for the unlinked file.

Lastly, once the metadata and objects have been
recovered through the AMRT and AOFRT, respectively,
they can be reconstructed. The process of reconstructing a
Lustre file from its constituent metadata and objects
already exists in the Lustre code base in the form of the
implementation of the standard file access use case
previously discovered. Therefore, it is superfluous to create
such a solution. Instead, this existing logic is reused and
abstracted into the Abstract File Reconstruction Tool
(AFRT), which consumes the metadata and objects for a
file and returns the reconstructed file. An illustration of this
Three-Step Recovery Solution, utilizing the AMRT,
AOFRT, and AFRT, is depicted in Figure 2.

Although this conceptual solution suffices to recover

an unlinked file, it has numerous hindrances and
disadvantages in the context of a distributed environment,
including: (1) this solution is localized in nature, where the
recovery agent is responsible for performing each of the
recovery and reconstruction actions, (2) the OSTs on which
the objects of interest exist must be mounted directly to the
single AOFRT, and (3) the solution does not scale to the
possibly numerous OSTs on which an unlinked file exists.
Bearing these issues in mind, an improved, distributed
solution to this distributed problem can be created.

Figure 2. Using the AMRT, AOFRT, and AFRT, the metadata
and objects for an unlinked file can be recovered and these
constituent parts of the unlinked file can be reconstructed,
resulting in the recovered file.

5

4 Distributed Solution
In order to alleviate these localized issues, distributed

software technologies can be used to create a solution that
both scales to meet the size of the Lustre file system, as
well as decouples the process from the central recovery
agent. In the case of the Three-Step Recovery Solution,
MapReduce can be used to distribute the recovery of an
unlinked file [11]. The driving force behind the adoption of
MapReduce for distributed recovery solution is the ability
of the MapReduce architecture to map the constituent parts
of a file and reduce these parts into a single, contiguous
file. As it stands, the smallest portion of a file that can be
recovered using the Three-Step Recovery Solution is an
object (recovered from an OST using the AOFRT), but this
does not provide fine enough granularity. For example, the
objects of a file cannot simply be serially rearranged and
ordered to reconstruct the file, since each object does not
contain sequential stripes for a file.

Instead, a finer level of granularity is needed: The
stripes themselves. If the stripes for a file can be obtained
from the recovered objects, these stripes could in turn be
keyed (mapped, in MapReduce vernacular) by the stripe
index and then reduced. In essence, the reduction step of
the MapReduce process would gather the stripes provided
to it and reorder these strips based on the stripe index (the
key for each stripe). It is important to note that the objects
recovered from an OST using the AOFRT contain only a
non-sequential subset of the stripes for a file. For example,
in the Striping a File portion of Section 2, 𝑜𝑏𝑗𝑒𝑐𝑡!
contains only {𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!}. Therefore, at
each step of the reduce process, only a partial, ordered
subset of the total stripes for a file are obtained. During the
final reduction step, the complete, ordered set of all strips is
obtained. This concept is illustrated in Figure 3.

A. Partial Striping Component

The keen reader will notice that in order for this
solution to be complete, some striping tool must be devised
that consumes an object, along with the metadata for the
file to be recovered, and produces a mapping of stripe
indices to the stripe data for each stripe. In the context of
the previous discussion of partially ordered stripes, this tool
is called the Partial Striping Component (PSC). Note that
the PSC acts as the mapping component in the MapReduce
architecture. As will be seen shortly, the mapping
algorithm for the distributed solution essentially delegates
the mapping logic to the PSC, which produces the keyed
stripes for an object recovered from the AOFRT. The
algorithm used by the PSC for obtaining the map of stripe
indices to stripe data for each stripe is enumerated in
Listing 1 (on the following page).

This algorithm presumes that the stripes of a file are
conceptualized in a tabular format, where the columns of
the table represent each object and each row represents one
pass of the round-robin striping algorithm. This
visualization, using the example data in Section 2, is
illustrated in Figure 4.

Note that the notation [𝑎, 𝑏) is used for each stripe to

denote that the data for the stripe ranges from byte 𝑎 to
byte 𝑏 of the file being striped (where the lower bound is
inclusive and the upper bound is exclusive). It is important
to also note that there are two distinct categories of bounds:
(1) file bounds and (2) object bounds. File bounds are
synonymous with the bounds illustrated using the [𝑎, 𝑏)
notation of Figure 4 and represent the bounds seen from
the perspective of the complete file (e.g. if the complete is
𝑓 bytes in size, the upper bound can vary within the range

Figure 3. By dividing each recovered object into its constituent
stripes, keyed by the stripe index, the partial stripe subsets can be
combined and ordered until the complete set of stripes is obtained.

Figure 4. Striping in the Lustre file system can be viewed as a
table, where columns represent the objects across which the file is
striped, and rows represent a single pass of the round-robin
striping algorithm.

6

0, 𝑓). Object bounds, on the other hand, represents the
bounds of the object file, rather than the complete file. For
example, although the complete file in Figure 4 is
40 𝑏𝑦𝑡𝑒𝑠 in length, 𝑜𝑏𝑗𝑒𝑐𝑡! is only 15 𝑏𝑦𝑡𝑒𝑠 in length,
since it contains bytes 0,5 , [15,20), and [30,35) from the
complete file (aggregately, only 15 𝑏𝑦𝑡𝑒𝑠). Continuing this
example, the following mapping of file bounds to object
bounds for 𝑜𝑏𝑗𝑒𝑐𝑡! can be computed:

𝑓𝑖𝑙𝑒 0,5 → 𝑜𝑏𝑗𝑒𝑐𝑡![0,5)
𝑓𝑖𝑙𝑒 15,20 → 𝑜𝑏𝑗𝑒𝑐𝑡![5,10)
𝑓𝑖𝑙𝑒 30,35 → 𝑜𝑏𝑗𝑒𝑐𝑡![10,15)

Although this distinction in file and object bounds may
appear to be subtle, a clear delineation of these two
definitions is essential to the understanding of the PSC
algorithm described in Listing 1.

𝒈𝒆𝒕_𝒔𝒕𝒓𝒊𝒑𝒆𝒔 𝑖𝑑𝑥!"# , 𝑐𝑛𝑡!"#$%& , 𝑓𝑖𝑙𝑒!"# , 𝑠𝑖𝑧𝑒!"#$%& , 𝑠𝑖𝑧𝑒!"#$:
 𝑖𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ≔ 𝒇𝒂𝒍𝒔𝒆
 𝑖𝑑𝑥!"# ≔ 0
 𝑠𝑡𝑟𝑖𝑝𝑒𝑠 ≔ 𝒏𝒆𝒘 𝑀𝑎𝑝
 𝒊𝒇 𝑠𝑖𝑧𝑒!"#$%& = 0 𝒐𝒓 𝑠𝑖𝑧𝑒!"#$ = 0:
 𝑖𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ≔ 𝒕𝒓𝒖𝒆
 𝒘𝒉𝒊𝒍𝒆 𝒏𝒐𝒕 𝑖𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑:
 𝑖𝑑𝑥!"#$%& ≔ 𝑐𝑛𝑡!"#$%&×𝑖𝑑𝑥!"# + 𝑖𝑑𝑥!"#
 𝑏𝑛𝑑!"#,!"#$ ≔ 𝑖𝑑𝑥!"#$%&×𝑠𝑖𝑧𝑒!"#$%&
 𝒊𝒇 𝑏𝑛𝑑!"#,!"#$ < 𝑠𝑖𝑧𝑒!"#$:
 𝑏𝑛𝑑!"#,!"# = 𝑖𝑑𝑥!"#×𝑠𝑖𝑧𝑒!"#$%&
 𝒊𝒇 𝑏𝑛𝑑!"#,!"# + 𝑠𝑖𝑧𝑒!"#$%& > 𝑠𝑖𝑧𝑒!"#$:
 𝑏𝑛𝑑!",!"# ≔ 𝑏𝑛𝑑!"#,!"# +

(𝑠𝑖𝑧𝑒!"#$ − 𝑏𝑛𝑑!"#,!"#$)
 𝒆𝒍𝒔𝒆:
 𝑏𝑛𝑑!",!"# ≔ 𝑏𝑛𝑑!"#,!"# + 𝑠𝑖𝑧𝑒!"#$%&
 𝒆𝒏𝒅
 𝑑𝑎𝑡𝑎 ≔ 𝑓𝑖𝑙𝑒!"# . 𝑟𝑒𝑎𝑑 (𝑏𝑛𝑑!"#,!"# , 𝑏𝑛𝑑!",!"#)
 𝑠𝑡𝑟𝑖𝑝𝑒𝑠. 𝑎𝑑𝑑 (𝑖𝑑𝑥!"#$%& ,𝑑𝑎𝑡𝑎)
 𝑖𝑑𝑥!"# ≔ 𝑖𝑑𝑥!"# + 1
 𝒆𝒍𝒔𝒆:
 𝑖𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ≔ 𝒕𝒓𝒖𝒆
 𝒆𝒏𝒅
 𝒆𝒏𝒅
 𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑡𝑟𝑖𝑝𝑒𝑠
𝒆𝒏𝒅

Listing 1. Using the metadata for a file, a list of stripes, keyed by
the index of the stripe, can be obtained algorithmically.

Leveraging the conceptualization of striping illustrated
in Figure 4, the PSC algorithm requires the index of object
from which the stripe are being retrieved, 𝑖𝑑𝑥!"#, which in
essence, represents the column index of the striping table
depicted in Figure 4. Note that all indices using in the PSC
start at 0, not 1. The algorithm also requires the following
parameters: the stripe count, 𝑐𝑛𝑡!"#$%!; file representing the
object, as recovered by the AOFRT, 𝑓𝑖𝑙𝑒!"#, which
contains the data for the object and therefore the stripe
data; the size of each stripe, 𝑠𝑖𝑧𝑒!"#$%&, in bytes; and the
size of the file, 𝑠𝑖𝑧𝑒!"#$, in bytes.

Using this input data, the PSC algorithm then iterates
until all stripes from an object have been extracted. In order
to determine that all stripes from an object have been
extracted, the lower bound of the stripe data, from the
perspective of the file to be recovered 𝑏𝑛𝑑!"#,!"#$, is
computed by taking the product of the stripe index and size
of the stripe. For example, if the stripe index is 3, the file
lower bound will be 15, as illustrated in Figure 4. In order
to compute the current index of the stripe using the tabular
conceptualization, the index of the first stripe for each row
is calculated by taking the product of the row index and the
total number of columns, equal to the count of objects,
shifted by the column index of the object (by adding the
column index).

For example, to find the index of the second stripe for
𝑜𝑏𝑗𝑒𝑐𝑡! is calculated as follows: The index of the first
stripe on the second row is equal to 1 (the row index)
multiplied by 3 (the total number objects over which the
file was striped, or the stripe count), or 3. This initial index
is then shifted by 1 (the index of the object, or column
index), which results in 4, the index of the second stripe
contained in 𝑜𝑏𝑗𝑒𝑐𝑡!.

If the file lower bound is greater than the size of the
file (the complete file, not the object file), then all stripes
for this object have been extracted and the algorithm
completes. For example, the index of the third stripe of
𝑜𝑏𝑗𝑒𝑐𝑡! (which does not exist) is 8, and therefore, the file
lower bound for this stripe is equal to 40. Since this lower
bound is inclusive, an the file only contains bytes [0,40),
there does not exist any bytes to read from the third stripe
of 𝑜𝑏𝑗𝑒𝑐𝑡!, and therefore, all stripe data has been extracted.

If there still remains stripe data to extract (not all
stripes have been extracted from the object file), then the
lower and upper bounds of the stripe, from the perspective
of the object file, 𝑏𝑛𝑑!"#,!"# and 𝑏𝑛𝑑!",!"#, respectively,
are recalculated. If number of the bytes remaining in the
file is less than the sum of the file lower bound and the
stripe size, then this stripe is the last stripe in the file and
contains less bytes than the stripe size. In this case, the
object upper bound is equal to the object lower bound, plus
the number of bytes remaining the file (the difference of
the file size and the file lower bound).

If the file size is greater than the sum of the file lower
bound and the stripe size, there are more bytes remaining in
the file than the stripe size, and thus, this stripe contains
exactly 𝑠𝑖𝑧𝑒!"#$%& number of bytes. Note that even though

7

the size of this stripe is equal to the stripe size, it may also
be the last stripe, where the size of the file being striped is
wholly divisible by the stripe size. This occurs when the
file size meets the criteria enumerated in equation (1)
below:

𝑠𝑖𝑧𝑒!"#$ 𝑚𝑜𝑑 𝑠𝑖𝑧𝑒!"#$%& = 0

where 𝑚𝑜𝑑 is the modulus operator.

With the stripe index and object lower and upper
bounds computed, the bytes from the object file can be read
using the 𝑟𝑒𝑎𝑑(. .) function. This function takes the
inclusive byte index of the first byte to read from the file as
its first argument, followed by the exclusive byte index of
the last byte to read from the file. More concisely, this
method reads from the object file with the following
bounds: [𝑏𝑜𝑢𝑛𝑑!"# , 𝑏𝑜𝑢𝑛𝑑!"). After obtaining this stripe
data, this data, along with its corresponding stripe index, is
added to a map with the following format,

𝑖𝑑𝑥!"#$%& → 𝑑𝑎𝑡𝑎!"#$%&

and the index of the row is incremented. When the
algorithm completes, this map is returned. Thus, using this
algorithm, the PSC can consume the recovered object file,
𝑓𝑖𝑙𝑒!"#, and the recovered metadata, which contains 𝑖𝑑𝑥!"#
(since the column index is equal to index of the object),
𝑐𝑛𝑡!"# (since this information can be implicitly obtained by
counting the number of 𝑜𝑏𝑗𝑒𝑐𝑡 → 𝑂𝑆𝑇 map entries in the
metadata for a file), 𝑠𝑖𝑧𝑒!"#$%&, and 𝑠𝑖𝑧𝑒!"#$, and produce a

map containing the data for each stripe contained in the
supplied object, keyed by the index of said stripe.

It is important to note that the conditional statement

𝑠𝑖𝑧𝑒!"#$%& = 0 𝒐𝒓 𝑠𝑖𝑧𝑒!"#$ = 0

at the preamble of the algorithm in Listing 1 is an
optimization that shortcuts the algorithm if either the stripe
size or file size is 0. In either case, the algorithm should
conclude immediately and an empty mapping of stripes
should be returned. By adding this optimization in the
preamble of the algorithm, the remaining portion of the
algorithm can assume, using De Morgan’s Law, that the
following condition holds,

𝑠𝑖𝑧𝑒!"#$%& ≠ 0 𝒂𝒏𝒅 𝑠𝑖𝑧𝑒!"#$ ≠ 0

simplifying the core of the striping algorithm.

B. Solution Architecture

The main disadvantage of the conceptual solution
presented in section 3 is that it is centralized about the
recovery agent, and therefore, all persistent targets (the
MDT and the OSTs) must be directly connected to the
agent, or to the AMRT and AOFRTs, which are in turn
connected to the agent. As the number of OSTs on which a
file is striped increases, this solution degrades and becomes
practically infeasible. The improved, distributed solution
architecture is illustrated in Figure 5.

Instead of connecting each OST to the recovery agent,

(1)

Figure 5. Using the MapReduce architecture, the stripes that constitute the recovered file flow from each OSS, managing an OST on
which the objects reside, to the recovery agent through a series of reductions, ultimately resulting in the complete, recovered file.

8

a PSC is placed on each of the OSSs, which decouples the
agent from direct contact with each of the OSTs containing
objects of interest. When a recovery is initiated, the
recovery agent recovers the metadata for the file of interest
and stores it, keyed by the identifier for the file to recover,
in a metadata store that is accessible by the PSC on each
OSS. The recovery agent then informs the PSC on each of
the OSSs (all PSCs) that a recovery has been initiated,
supplying the identifier for the file to recover. The PSCs
then obtain the metadata for this file and provide it to the
Mapper component. The Mapper component then uses the
metadata to decide if the objects for the file are contained
(or, were contained prior to unlinking) on any of the OSTs
managed by the OSS on which the Mapper resides.

If the OSS on which the Mapper resides does not
manage any OSTs containing the objects for the file to be
recovered, the recovery request completes on that OSS. If,
instead, the Mapper discovers that the OSTs managed by
the OSS on which the Mapper resides contain objects that
make up the file, the Mapper then uses the AOFRT on each
OSS to recover these objects. Once all the pertinent objects
have been recovered, the objects, along with the metadata
for the file to be recovered, are supplied to the PSC, which
produces a map, where the keys are the stripe indices for
the stripes contained in the supplied object and the value
for each key is the stripe data corresponding to the stripe
index. The PSC then returns this map (for each object it is
supplied) to the Mapper, which then forwards these maps
onto the reducer.

The reducer then combines and sorts these maps to
produce a complete set of all stripes for the file to be
recovered. This complete stripe set is then returned to the
recovery agent that initiated the recovery process. The
recovery agent can then obtain the data for the file by
reading the value for each map entry, in order of the index.
For example, the value for index 0 is read, then the value
for index 1 is read, and so forth. At the completion of this
process, the recovered file resides on the recovery agent in
accordance with the purpose of the recovery process.

C. Notes & Improvements

There are some important notes to consider in this
solution architecture. First, the PSC has two main
responsibilities: (1) to act as the point-of-contact between
the OSS and the recovery agent, and (2) to extract and map
the stripes obtained from the objects recovered by the
AOFRT. These responsibilities are disparate beyond the
fact they both pertain to the recovery of a file, and
therefore, the former responsibility can be divided into a
secondary component, called the Point-of-Contact
Component (PCC). This PCC is then responsible for
obtaining the metadata from the metadata store on the
recovery agent and passing this metadata to the Mapper
component. Using this scheme, the Mapper only uses the
PSC as a delegate from which the mapped stripes for the

recovered objects are obtained. This improved decoupling
is illustrated in Figure 63.

Apart from this improvement of the PSC, it is
important to note that the number of reducers in this
architecture is not fixed (or not simply one, as depicted in
Figure 5). Instead, as is part of the MapReduce
architecture, the number of reducers can scale to meet the
needs of the recovery process. For example, if a small file
to be recovered is striped across only a few OSTs, then
only a few reducers will be needed. If instead, a very large
file to be recovered is striped across a large number of
OSTs, then many reducers can be used to distributed the
reduction process and offload to required work on a large
number of compute nodes. In a sense, the distributed

Three-Step Recovery Solution can be scaled to meet the
challenge of theoretically recovering any size file with any
type of striping pattern (e.g. large number of objects or
small number of objects).

5 Conclusion
Although a great deal of research has been completed

in previous decades on distributed file systems, primarily
the Lustre distributed file system, a gap has formed in the
research of technologies that support these complex
systems. Foremost among these research disparities is the
forensics and file recovery techniques surrounding the
Lustre file system. This paper serves the purpose of filling
this gap and providing an implementable solution
architecture that can be used to create a distributed
resolution to this naturally distributed problem.

At the time of writing, the solution architecture
described in this paper has not been implemented in its

3 The solution architecture does not make this distinction, as the
purpose of Figure 5 is to provide a conceptualized, distributed
solution, rather than design and optimize the intricacies of the
solution.

Figure 6. By dividing the two responsibilities of the PSC into the
PCC and PSC, respectively, the PSC maintains higher cohesion
and increases the singularity of its purpose.

9

entirety, but this does not detract from its practically and
pragmatism. To the contrary, the main algorithm that
makes this solution possible, as described in Listing 1, has
been implemented in a simulated environment and tested
using a suite of automated tests. The source code for the
implementation of this algorithm, along with its battery of
automated tests, can be found at https://goo.gl/bl6mX6.

As a supplemental note, the algorithms and solutions
described in this paper are not strictly limited in scope to
the Lustre distributed file system. Instead, these solutions
are described in terms of the general concepts common
among all metadata-based file systems and therefore can be
extended to any metadata-based distributed file system by
replacing the Lustre-specific terminology used in this paper
with the respective terminology of the metadata-based
distributed file system for which this solution is ported.

Acknowledgements
This research would not have been possible without

the patient help and support of Dr. Remzi Seker at
Department of Electrical, Computer, Software, and
Systems Engineering at Embry-Riddle Aeronautical
Universi;ty. I am deeply grateful for the technical
knowledge and advisement you have provided throughout
this endeavor. I would also like to thank Dr. Sarp Oral at
Oak Ridge National Laboratory for his expertise on the
Lustre file system. Although our correspondence was brief,
the information you have provided me is invaluable and
was directly responsible for making this research possible.
All mistakes and errors in the paper are solely mine.

Joshua 24:15

—J.A.

References
[1] Jones, M. Tim. "Network File Systems and Linux."

Network File Systems and Linux. IBM DeveloperWorks,
10 Nov. 2010. Web. 02 Apr. 2015.

[2] “Lustre® File System.” OpenSFS: The Lustre File System
Community. Open Scalable File Systems, Inc., n.d. Web.
04 Dec. 2014.

[3] Rutman, Nathan. "Rock-Hard Lustre Trends in Scalability
and Quality." (n.d.): n. pag. OpenSFS: The Lustre File
System Community. Xyratex, 2011. Web. 2 May 2015.

[4] Petersen, Torben K. Inside The Lustre File System (n.d.):
n. pag. Seagate. Seagate. Web. 26 Mar. 2015.

[5] Montalbano, Elizabeth. "Update: Oracle Agrees to Buy
Sun for $7.4B." InfoWorld. N.p., 20 Apr. 2009. Web. 3
Apr. 2015.

[6] Brueckner, Rich. "Inside Track: Oracle Has Kicked Lustre
to the Curb - InsideHPC." InsideHPC. N.p., 10 Jan. 2011.
Web. 03 Apr. 2015.

[7] Gorda, Brent. "Whamcloud Aims to Make Sure Lustre
Has a Future in HPC - InsideHPC." InsideHPC. N.p., 20
Aug. 2010. Web. 03 Apr. 2015.

[8] “Xyratex Advances Lustre® Initiative, Assumes
Ownership of Related Assets.” Seagate. N.p., 19 Feb.
2013. Web. 03 Apr. 2015.

[9] "Lustre Software Release 2.x Operations Manual." (n.d.):
n. pag. HPDD Community Space Documentation. Intel
Corporation, 19 Mar. 2015. Web. 19 Mar. 2015.
<https://build.hpdd.intel.com/job/lustre-
manual/lastSuccessfulBuild/artifact/lustre_manual.pdf>.

[10] Wang, Feiyl, Sarp Oral, Galen Shipman, Oleg Drokin,
Tom Wang, and Isaac Huang. "Understanding Lustre
Filesystem Internals." (n.d.): n. pag. Oak Ridge
Leadership Computing Facility. Oak Ridge National
Laboratory, Apr. 2009. Web. 27 Mar. 2015.
<http://users.nccs.gov/~fwang2/papers/lustre_report.pdf>.

[11] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce:
Simplified Data Processing on Large Clusters." 6th
Symposium on Operating Systems Design &
Implementation (2004): n. pag. Google.com. Google, Inc.,
2004. Web. 6 Apr. 2015.

