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Abstract 
With the advancement of cloud-computing 

technologies and the growth in distributed software 
applications, a great deal of research that has been 
focused on the concepts and implementations of distributed 
file systems to support these application. Since its inception 
in 1999 by Peter Braam at Carnegie Mellon University, the 
Lustre distributed file system has gained both the technical, 
as well as financial interest of some of the largest 
technology entities, including Oracle, Seagate, Intel, Oak 
Ridge National Laboratory, and OpenSFS. With this 
immense backing, Lustre has been incorporated in over 
60% of the TOP100 high performance computers in the 
world and is slated to significantly increase this market 
share. Although the Lustre file system itself has seen a 
sharp increase in research since its infancy, support for 
many of the fields surrounding the file system has been 
greatly lacking. Primary among these deficiencies is file 
recovery on the Lustre file system. This paper attempts to 
fill this gap and provides a simplified solution which is 
then developed into a distributed solution that can scale to 
meet the needs and requirements of various sizes of Lustre 
file system deployments. While this paper focuses on the 
Lustre file system, the concepts and solution provided in 
this paper can be used on any similar metadata-based 
distributed file system. Although this paper does not 
provide an implementation of this solution, a complete 
solution architecture is provided, enabling further research 
and implementation. 

1 Introduction 
In the past two decades, the software industry has 

experienced an explosive growth in cloud computing and 
distributed software technology, and with this expanse, 
there has been a subsequent need to research and 
implement supporting infrastructure technologies, 
particularly file systems. While networked file systems 
have been a part of software infrastructure since the 

inception of the File Access Listener (FAL) in 1976, which 
would serve as the forerunner for the Network File System 
(NFS), these file systems fail to meet the growing need of 
distributed software to provide the vast throughput needed 
by these large-scale systems [1]. In essence, the file system 
has become to the distributed software application what the 
hard drive was during the age of hard disk drives: The 
underlying bottleneck that dictates a large portion of the 
Input/Output (I/O) performance characteristics of the 
system. In order to resolve this issue, a file system based on 
distributed technologies and principles was needed. 

 This need led to a plethora of distributed file systems, 
foremost among them, the Lustre Distributed File system. 
Created in 1999 by Peter Braam of Carnegie Mellon 
University, Lustre has soared in popularity in its nearly 
two-decade lifespan, experiencing interest by Sun 
Microsystems, Intel, Seagate, Oak Ridge National 
Laboratories, and a host of other large sponsors during this 
time. Leveraging this popularity, Lustre has now achieved 
more than a 60% market share in the TOP100 high 
performance computers (HPCs) and is slated to increase its 
growth in both the military and commercial software 
sectors in the coming years [2].  

Even with this enormous growth, research is still 
lacking in supporting concepts, including file system 
forensics. In particular, the research surrounding the 
recovery of deleted files from the Lustre distributed file 
system, and metadata-based file systems in general, is 
sparse. Therefore, the research contained within this paper 
is intended to serve the purpose of filling this gap and 
provide a solution architecture that can be implemented to 
solve the problem of distributed file recovery. 

Section 2 provides an introduction to the technical 
aspects that make up the Lustre file system, as well as 
background knowledge about the concepts (such as 
metadata-based distributed file systems) that will be 
essential to the understanding of the solution presented in 
this paper. Likewise, a brief history of the Lustre file 
system is also included to provide the historical and 
technological context of Lustre. 
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Section 3 presents the problem context for file 
recovery on the Lustre file system and describes a basic, 
conceptual solution that will later be used as the stepping 
stone for the distributed solution to the same problem. This 
solution leverages the existing technologies available for 
localized file recovery and treats the problem of distributed 
file recovery as a composite of multiple, localized file 
recoveries.  

Section 4 leverages this conceptual model to create a 
distributed solution to the file recovery problem on Lustre, 
allowing the solution to scale to meet the needs of the 
particular Lustre cluster on which the recovery is being 
performed. This distributed solution also resolves many of 
the disadvantages of the conceptual solution. 

The conclusion section provides an overarching 
description of the limitations and applicability of the 
solution described in section 4 and provides additional 
resources such as tested code examples that support the 
distributed solution presented in this paper. 

2 Lustre File System 
The Lustre file system is a metadata, object-based 

distributed file system that is capable of providing 
petabytes of storage and terabytes of aggregate I/O over a 
disperse network [3]. After the creation of Lustre in 1999, 
Peter Braam acquired Lustre under his company, Cluster 
File Systems (CFS); CFS was later purchased by Sun 
Microsystems in September of 2007 [4]. In April 2010, 
Oracle bought out Sun Microsystems, and thus acquired the 
Lustre file system [5]. In December of the same year, 
Oracle announced that it would discontinue long-term 
support for Lustre, and in response, Whamcloud and Open 
Scalable File Systems (OpenSFS) were created in order to 

continue to the development of Lustre [6], [7]. Supporting 
this initiative, Xyratex Ltd., a Seagate affiliate of whom 
Peter Braam joined in late 2010, purchased the intellectual 
property for Lustre and later donated the lustre.org 
domain name and logo to the open source community [8].  

Although Lustre has switched ownership numerous 
times over its lifetime, the foundational concepts of this 
distributed file system have remained largely constant. 
Lustre is an object-based file system that divides a single, 
contiguous file into multiple portions called objects. These 
objects are then stored on various storage nodes across a 
Lustre cluster, allowing the once-singular file to be 
accessed and modified in a parallel manner. For example, if 
a file is divided into three parts, all three parts can be read 
in parallel to reconstruct the file, analogous to the 
technique used in Redundant Array of Independent Disks 
(RAID) 0 configuration. 

In order to record the location of these objects in a 
Lustre cluster, there are two major techniques available to 
date: (1) a functionally deterministic algorithm or (2) a 
metadata service. Although deterministic functions for 
mapping objects of a file to storage nodes, such as 
Controlled Replication under Scalable Hashing (CRUSH), 
are a well-researched means of achieving this mapping, 
Lustre implements a persistent record of object mappings 
using a metadata service. This metadata service simply 
records the mapping of each object to its associated object 
storage node, where the key of the mapping is the object 
identifier and the value is the identifier of the 
corresponding object storage node.  

The components, and there corresponding points of 
interaction, are illustrated below in Figure 1. 

The client is the component that interfaces with the 
end-user of the Lustre file system and implements the 

Figure 1. A Lustre cluster is divided into clients, which interface with the end-user, MGS/MGT pairs that store configuration data, 
MDS/MDT pairs that store metadata, and OSS/OST pairs that store the objects that compose files. 
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Linux Virtual File System (VFS) interface in order to 
provide this abstraction (this implementation is referred to 
as Lustre Lite, or llite). The Management Server (MGS) 
and Management Target (MGT) pair stores the 
configuration data about a Lustre cluster, and although this 
pair is important in the context of establishing a Lustre 
cluster, this paper does not focus on this pair. The Metadata 
Server (MDS) and Metadata Target (MDT) manage and 
store the metadata for the Lustre file system, respectively. 
The Object Storage Server (OSS) manages a series of 
Object Storage Targets (OSTs), where the objects 
associated with a file are striped across one or more OSTs. 
Note that each OSS can manage multiple OSTs, and that all 
interactions with the OSTs are performed through its 
corresponding OSS (the OSS serves as a proxy for its 
associated OSTs). 

In order to store the metadata for a file, the MDS 
stores a shell of an inode on the MDT, where the direct and 
indirect block references of the inode are unused (since the 
data for the file does not exist locally on the MDT, but 
rather, on the OSTs) and the extended attributes of the 
inode are used to store the metadata for a file in the Lustre 
file system. The exact metadata stored in these Layout 
Extended Attributes (Layout EAs) are better understood in 
the context of the striping algorithm implemented by the 
Lustre file system. 

A. Striping a File 

The striping in a Lustre cluster is accomplished using a 
round-robin algorithm parameterized by the number of 
OSTs to stripe across (stripe count1) and the number of 
bytes written in each stripe (stripe size) [9]. Starting with 
the first OST, 𝑛 bytes are written to the object 
corresponding to the file to be written on the OST, where 𝑛 
is equal to the stripe size. Once completed, 𝑛 bytes are 
written to the object on the next OST. This process 
continues until the all bytes of the file have been written, or 
each OST has been written to exactly once; in the latter 
case, writing continues from the first OST and continues 
using the same algorithm previously described. Note that 
only one object exists on each OST for a given file and the 
object exists on each OST as a file on the local file system 
of the OST (sometimes referred to as the backing file 
system).  

More succinctly, there is a one-to-one mapping 
between the objects that make up a file and the OSTs on 
which the objects are stored. Each object contains stripes 
𝑖, 𝑖 + 𝑘, 𝑖 + 2𝑘,…, where 𝑖 is the index of object and 𝑘 is 
the stripe count. For example, if a 40 𝑀𝐵 file is striped 
with a stripe size of 5 𝑀𝐵 and a stripe count of 3, the 
resulting striping scheme would resemble the following: 

𝑜𝑏𝑗𝑒𝑐𝑡! → {𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!} 
𝑜𝑏𝑗𝑒𝑐𝑡! → {𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!} 
𝑜𝑏𝑗𝑒𝑐𝑡! → {𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!} 

                                                             
1 Note that stripe count does not refer to the number of stripes, but 
rather, the number of OSTs that a file is striped across. 

 
Note that each object does not necessarily contain the same 
number of stripes, and in general, each file in a Lustre file 
system can have a different stripe size and stripe count than 
the other files in the same file system. 

B. Accessing a File 

Using this scheme, there are three main steps that a 
client must perform in order to access a file [9], [10]: 

 
1. Obtain file metadata: the client obtains the 

metadata for the file from the MDS 
2. Retrieve each object: using this metadata, the 

client retrieves each object that makes up the file 
from the OSTs storing these objects (this retrieval 
is performed through the OSSs associated with 
each of the OSTs on which an object is stored) 

3. Reconstruct file: using the metadata and the 
objects retrieved from the OSTs, the client can 
reconstruct the singular, contiguous file from its 
constituent objects 

 
Using the these steps, the client component is capable of 
providing an end-user with the façade of a contiguous file, 
while in reality, the file is actually distributed in the form 
of objects across multiple OSTs in the Lustre cluster. While 
this basic procedure is the most common use case in the 
normal operation of Lustre, this paper also focuses on the 
use case performed when a file is deleted. 

C. Deleting a File 

Deletion, or unlinking, of a file in the Lustre file 
system requires two main steps [10]: 

 
1. Delete each object: the object files containing the 

stripes of the file to be deleted are deleted from 
the local file system of their corresponding OSTs 

2. Delete metadata: the inode containing the 
metadata associated with the file to be deleted is 
deleted from the MDT storing the inode 

 
Once the object files and metadata inode for a Lustre file 
are deleted from the OSTs and MDT, respectively, the file 
considered to be deleted from the Lustre file system. 
Although it appears as though the objects and metadata 
inode are permanently deleted, they are only deleted in the 
sense that a file is deleted from a local file system in a 
localized (non-distributed) system. Using this knowledge, 
the recovery of a file on the Lustre distributed file system 
can be viewed as multiple recoveries of local files from a 
local file system and therefore, existing localized file 
recovery techniques can be used to recover and reconstruct 
a deleted file in the Lustre file system. 
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3 Conceptual Solution 
Based on the steps in the deletion use case described in 

the previous section, recovery of a file from the Lustre file 
system entails the recovery of the metadata associated with 
the Lustre file, and the subsequent recovery of each of the 
objects associated with the file. Once the metadata and 
objects have been recovered, the once-deleted file can be 
reconstructed, resulting in the complete, recovered file. 
Viewed differently, the recovery of a file mimics the use 
case for accessing a file in the Lustre file system, but 
before the metadata and objects are retrieved, they must be 
recovered from the MDT and OSTs, respectively. 

Therefore, the steps involved in recovering an 
unlinked file from the Lustre file system are as follows: 

 
1. Recover and obtain file metadata: the agent 

recovering the file must first recover the metadata 
from the MDT and then store the recovered 
metadata for later use 

2. Recover and retrieve each object: utilizing the 
recovered metadata, the OSTs on which the 
objects for the unlinked files exist can be 
discovered; the objects associated with the 
unlinked file are then recovered from their 
respective OSTs and stored on the recovery agent 

3. Reconstruct file: using the recovered metadata 
and objects, the unlinked file can be reconstructed, 
thus recovering the file 

 
Due to the trinary nature of this solution, it is termed the 
Three-Step Recovery Solution. Although the details of 
each steps in the Three-Step Solution have not yet been 
elaborated, logic already exists for the implementation of a 
component capable of performing each task.  

In the case of the recovery of the metadata from the 
MDT, the metadata stored on the MDT exists in the form 
of an inode on the local file system of the MDT, and 
therefore, the recovery of the metadata from the MDT 
amounts to the recovery of an inode from a local file 
system. Numerous solutions to this problem already exist 
in digital forensics and the particulars of local inode 
recovery are not discussed further; rather, the logic capable 
of recovering the local inode is abstracted into a component 
called the Abstract Metadata Recovery Tool (AMRT), 
which can be used by the recovery agent to recover the 
metadata for a file based on a supplied, unique identifier 
for the file2. 

In much the same way, the objects required to 
reconstruct the recovered file exist on the local file systems 
of the OSTs. Therefore, the recovery of each object from 
its corresponding OST amounts to the recovery of a file 

                                                             
2 File Identifiers (FIDs) are used in the Lustre file system to 
uniquely identify files at a global level in the file system 
(uniquely between all OSTs in a Lustre file system) and therefore, 
these FIDs are a natural fit for the unique means of identifying the 
file to recover [9]. 

from the local file system of the OST. In the same manner 
as this problem has already been solved for the recovery of 
an inode from the local file system of the MDT, a great 
deal of research (and implemented tools) has been devised 
for the recovery of a file from a local file system. 
Therefore, this logic is abstracted into the Abstract Object 
File Recovery Tool (AOFRT), which can be used by the 
recovery agent to recover the objects for the unlinked file. 

Lastly, once the metadata and objects have been 
recovered through the AMRT and AOFRT, respectively, 
they can be reconstructed. The process of reconstructing a 
Lustre file from its constituent metadata and objects 
already exists in the Lustre code base in the form of the 
implementation of the standard file access use case 
previously discovered. Therefore, it is superfluous to create 
such a solution. Instead, this existing logic is reused and 
abstracted into the Abstract File Reconstruction Tool 
(AFRT), which consumes the metadata and objects for a 
file and returns the reconstructed file. An illustration of this 
Three-Step Recovery Solution, utilizing the AMRT, 
AOFRT, and AFRT, is depicted in Figure 2. 

 

 
 
 
 
 
 

 
Although this conceptual solution suffices to recover 

an unlinked file, it has numerous hindrances and 
disadvantages in the context of a distributed environment, 
including: (1) this solution is localized in nature, where the 
recovery agent is responsible for performing each of the 
recovery and reconstruction actions, (2) the OSTs on which 
the objects of interest exist must be mounted directly to the 
single AOFRT, and (3) the solution does not scale to the 
possibly numerous OSTs on which an unlinked file exists. 
Bearing these issues in mind, an improved, distributed 
solution to this distributed problem can be created. 

Figure 2. Using the AMRT, AOFRT, and AFRT, the metadata 
and objects for an unlinked file can be recovered and these 
constituent parts of the unlinked file can be reconstructed, 
resulting in the recovered file. 
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4 Distributed Solution 
In order to alleviate these localized issues, distributed 

software technologies can be used to create a solution that 
both scales to meet the size of the Lustre file system, as 
well as decouples the process from the central recovery 
agent. In the case of the Three-Step Recovery Solution, 
MapReduce can be used to distribute the recovery of an 
unlinked file [11]. The driving force behind the adoption of 
MapReduce for distributed recovery solution is the ability 
of the MapReduce architecture to map the constituent parts 
of a file and reduce these parts into a single, contiguous 
file. As it stands, the smallest portion of a file that can be 
recovered using the Three-Step Recovery Solution is an 
object (recovered from an OST using the AOFRT), but this 
does not provide fine enough granularity. For example, the 
objects of a file cannot simply be serially rearranged and 
ordered to reconstruct the file, since each object does not 
contain sequential stripes for a file. 

Instead, a finer level of granularity is needed: The 
stripes themselves. If the stripes for a file can be obtained 
from the recovered objects, these stripes could in turn be 
keyed (mapped, in MapReduce vernacular) by the stripe 
index and then reduced. In essence, the reduction step of 
the MapReduce process would gather the stripes provided 
to it and reorder these strips based on the stripe index (the 
key for each stripe). It is important to note that the objects 
recovered from an OST using the AOFRT contain only a 
non-sequential subset of the stripes for a file. For example, 
in the Striping a File portion of Section 2, 𝑜𝑏𝑗𝑒𝑐𝑡! 
contains only {𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!, 𝑠𝑡𝑟𝑖𝑝𝑒!}. Therefore, at 
each step of the reduce process, only a partial, ordered 
subset of the total stripes for a file are obtained. During the 
final reduction step, the complete, ordered set of all strips is 
obtained. This concept is illustrated in Figure 3. 

A. Partial Striping Component 

The keen reader will notice that in order for this 
solution to be complete, some striping tool must be devised 
that consumes an object, along with the metadata for the 
file to be recovered, and produces a mapping of stripe 
indices to the stripe data for each stripe. In the context of 
the previous discussion of partially ordered stripes, this tool 
is called the Partial Striping Component (PSC). Note that 
the PSC acts as the mapping component in the MapReduce 
architecture. As will be seen shortly, the mapping 
algorithm for the distributed solution essentially delegates 
the mapping logic to the PSC, which produces the keyed 
stripes for an object recovered from the AOFRT. The 
algorithm used by the PSC for obtaining the map of stripe 
indices to stripe data for each stripe is enumerated in 
Listing 1 (on the following page). 

This algorithm presumes that the stripes of a file are 
conceptualized in a tabular format, where the columns of 
the table represent each object and each row represents one 
pass of the round-robin striping algorithm. This 
visualization, using the example data in Section 2, is 
illustrated in Figure 4. 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
Note that the notation [𝑎, 𝑏) is used for each stripe to 

denote that the data for the stripe ranges from byte 𝑎 to 
byte 𝑏 of the file being striped (where the lower bound is 
inclusive and the upper bound is exclusive). It is important 
to also note that there are two distinct categories of bounds: 
(1) file bounds and (2) object bounds. File bounds are 
synonymous with the bounds illustrated using the [𝑎, 𝑏) 
notation of Figure 4 and represent the bounds seen from 
the perspective of the complete file (e.g. if the complete is 
𝑓 bytes in size, the upper bound can vary within the range 

Figure 3. By dividing each recovered object into its constituent 
stripes, keyed by the stripe index, the partial stripe subsets can be 
combined and ordered until the complete set of stripes is obtained. 

Figure 4. Striping in the Lustre file system can be viewed as a 
table, where columns represent the objects across which the file is 
striped, and rows represent a single pass of the round-robin 
striping algorithm. 
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0, 𝑓 ). Object bounds, on the other hand, represents the 
bounds of the object file, rather than the complete file. For 
example, although the complete file in Figure 4 is 
40 𝑏𝑦𝑡𝑒𝑠 in length, 𝑜𝑏𝑗𝑒𝑐𝑡! is only 15 𝑏𝑦𝑡𝑒𝑠 in length, 
since it contains bytes 0,5 , [15,20), and [30,35) from the 
complete file (aggregately, only 15 𝑏𝑦𝑡𝑒𝑠). Continuing this 
example, the following mapping of file bounds to object 
bounds for 𝑜𝑏𝑗𝑒𝑐𝑡! can be computed: 

 
𝑓𝑖𝑙𝑒 0,5      → 𝑜𝑏𝑗𝑒𝑐𝑡![0,5) 
𝑓𝑖𝑙𝑒 15,20 → 𝑜𝑏𝑗𝑒𝑐𝑡![5,10) 
𝑓𝑖𝑙𝑒 30,35 → 𝑜𝑏𝑗𝑒𝑐𝑡![10,15) 

 
Although this distinction in file and object bounds may 
appear to be subtle, a clear delineation of these two 
definitions is essential to the understanding of the PSC 
algorithm described in Listing 1.  

 

𝒈𝒆𝒕_𝒔𝒕𝒓𝒊𝒑𝒆𝒔 𝑖𝑑𝑥!"# , 𝑐𝑛𝑡!"#$%& , 𝑓𝑖𝑙𝑒!"# , 𝑠𝑖𝑧𝑒!"#$%& , 𝑠𝑖𝑧𝑒!"#$ : 
    𝑖𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ≔ 𝒇𝒂𝒍𝒔𝒆 
    𝑖𝑑𝑥!"# ≔ 0 
    𝑠𝑡𝑟𝑖𝑝𝑒𝑠 ≔ 𝒏𝒆𝒘 𝑀𝑎𝑝 
    𝒊𝒇 𝑠𝑖𝑧𝑒!"#$%& = 0 𝒐𝒓 𝑠𝑖𝑧𝑒!"#$ = 0: 
        𝑖𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ≔ 𝒕𝒓𝒖𝒆 
    𝒘𝒉𝒊𝒍𝒆 𝒏𝒐𝒕 𝑖𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑: 
        𝑖𝑑𝑥!"#$%& ≔ 𝑐𝑛𝑡!"#$%&×𝑖𝑑𝑥!"# + 𝑖𝑑𝑥!"# 
        𝑏𝑛𝑑!"#,!"#$ ≔ 𝑖𝑑𝑥!"#$%&×𝑠𝑖𝑧𝑒!"#$%& 
        𝒊𝒇 𝑏𝑛𝑑!"#,!"#$ < 𝑠𝑖𝑧𝑒!"#$: 
            𝑏𝑛𝑑!"#,!"# = 𝑖𝑑𝑥!"#×𝑠𝑖𝑧𝑒!"#$%& 
            𝒊𝒇 𝑏𝑛𝑑!"#,!"# + 𝑠𝑖𝑧𝑒!"#$%& > 𝑠𝑖𝑧𝑒!"#$: 
                𝑏𝑛𝑑!",!"# ≔ 𝑏𝑛𝑑!"#,!"# + 

(𝑠𝑖𝑧𝑒!"#$ − 𝑏𝑛𝑑!"#,!"#$) 
            𝒆𝒍𝒔𝒆: 
                𝑏𝑛𝑑!",!"# ≔ 𝑏𝑛𝑑!"#,!"# + 𝑠𝑖𝑧𝑒!"#$%& 
            𝒆𝒏𝒅 
            𝑑𝑎𝑡𝑎 ≔ 𝑓𝑖𝑙𝑒!"# . 𝑟𝑒𝑎𝑑 (𝑏𝑛𝑑!"#,!"# , 𝑏𝑛𝑑!",!"#)                                       
            𝑠𝑡𝑟𝑖𝑝𝑒𝑠. 𝑎𝑑𝑑 (𝑖𝑑𝑥!"#$%& ,𝑑𝑎𝑡𝑎) 
            𝑖𝑑𝑥!"# ≔ 𝑖𝑑𝑥!"# + 1 
       𝒆𝒍𝒔𝒆: 
           𝑖𝑠_𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 ≔ 𝒕𝒓𝒖𝒆 
       𝒆𝒏𝒅 
    𝒆𝒏𝒅 
    𝒓𝒆𝒕𝒖𝒓𝒏 𝑠𝑡𝑟𝑖𝑝𝑒𝑠 
𝒆𝒏𝒅 

Listing 1. Using the metadata for a file, a list of stripes, keyed by 
the index of the stripe, can be obtained algorithmically. 

 

Leveraging the conceptualization of striping illustrated 
in Figure 4, the PSC algorithm requires the index of object 
from which the stripe are being retrieved, 𝑖𝑑𝑥!"#, which in 
essence, represents the column index of the striping table 
depicted in Figure 4. Note that all indices using in the PSC 
start at 0, not 1. The algorithm also requires the following 
parameters: the stripe count, 𝑐𝑛𝑡!"#$%!; file representing the 
object, as recovered by the AOFRT, 𝑓𝑖𝑙𝑒!"#, which 
contains the data for the object and therefore the stripe 
data; the size of each stripe, 𝑠𝑖𝑧𝑒!"#$%&, in bytes; and the 
size of the file, 𝑠𝑖𝑧𝑒!"#$, in bytes. 

Using this input data, the PSC algorithm then iterates 
until all stripes from an object have been extracted. In order 
to determine that all stripes from an object have been 
extracted, the lower bound of the stripe data, from the 
perspective of the file to be recovered 𝑏𝑛𝑑!"#,!"#$, is 
computed by taking the product of the stripe index and size 
of the stripe. For example, if the stripe index is 3, the file 
lower bound will be 15, as illustrated in Figure 4. In order 
to compute the current index of the stripe using the tabular 
conceptualization, the index of the first stripe for each row 
is calculated by taking the product of the row index and the 
total number of columns, equal to the count of objects, 
shifted by the column index of the object (by adding the 
column index).  

For example, to find the index of the second stripe for 
𝑜𝑏𝑗𝑒𝑐𝑡! is calculated as follows: The index of the first 
stripe on the second row is equal to 1 (the row index) 
multiplied by 3 (the total number objects over which the 
file was striped, or the stripe count), or 3. This initial index 
is then shifted by 1 (the index of the object, or column 
index), which results in 4, the index of the second stripe 
contained in 𝑜𝑏𝑗𝑒𝑐𝑡!. 

If the file lower bound is greater than the size of the 
file (the complete file, not the object file), then all stripes 
for this object have been extracted and the algorithm 
completes. For example, the index of the third stripe of 
𝑜𝑏𝑗𝑒𝑐𝑡! (which does not exist) is 8, and therefore, the file 
lower bound for this stripe is equal to 40. Since this lower 
bound is inclusive, an the file only contains bytes [0,40), 
there does not exist any bytes to read from the third stripe 
of 𝑜𝑏𝑗𝑒𝑐𝑡!, and therefore, all stripe data has been extracted.  

If there still remains stripe data to extract (not all 
stripes have been extracted from the object file), then the 
lower and upper bounds of the stripe, from the perspective 
of the object file, 𝑏𝑛𝑑!"#,!"# and 𝑏𝑛𝑑!",!"#, respectively, 
are recalculated. If number of the bytes remaining in the 
file is less than the sum of the file lower bound and the 
stripe size, then this stripe is the last stripe in the file and 
contains less bytes than the stripe size. In this case, the 
object upper bound is equal to the object lower bound, plus 
the number of bytes remaining the file (the difference of 
the file size and the file lower bound).  

If the file size is greater than the sum of the file lower 
bound and the stripe size, there are more bytes remaining in 
the file than the stripe size, and thus, this stripe contains 
exactly 𝑠𝑖𝑧𝑒!"#$%& number of bytes. Note that even though 
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the size of this stripe is equal to the stripe size, it may also 
be the last stripe, where the size of the file being striped is 
wholly divisible by the stripe size. This occurs when the 
file size meets the criteria enumerated in equation (1) 
below: 

 
𝑠𝑖𝑧𝑒!"#$  𝑚𝑜𝑑 𝑠𝑖𝑧𝑒!"#$%& = 0 

 
where 𝑚𝑜𝑑 is the modulus operator. 

With the stripe index and object lower and upper 
bounds computed, the bytes from the object file can be read 
using the 𝑟𝑒𝑎𝑑(. . ) function. This function takes the 
inclusive byte index of the first byte to read from the file as 
its first argument, followed by the exclusive byte index of 
the last byte to read from the file. More concisely, this 
method reads from the object file with the following 
bounds: [𝑏𝑜𝑢𝑛𝑑!"# , 𝑏𝑜𝑢𝑛𝑑!"). After obtaining this stripe 
data, this data, along with its corresponding stripe index, is 
added to a map with the following format,  

 
𝑖𝑑𝑥!"#$%& → 𝑑𝑎𝑡𝑎!"#$%& 

 
and the index of the row is incremented. When the 
algorithm completes, this map is returned. Thus, using this 
algorithm, the PSC can consume the recovered object file, 
𝑓𝑖𝑙𝑒!"#, and the recovered metadata, which contains 𝑖𝑑𝑥!"# 
(since the column index is equal to index of the object), 
𝑐𝑛𝑡!"# (since this information can be implicitly obtained by 
counting the number of 𝑜𝑏𝑗𝑒𝑐𝑡 → 𝑂𝑆𝑇 map entries in the 
metadata for a file), 𝑠𝑖𝑧𝑒!"#$%&, and 𝑠𝑖𝑧𝑒!"#$, and produce a 

map containing the data for each stripe contained in the 
supplied object, keyed by the index of said stripe. 

It is important to note that the conditional statement 
 
𝑠𝑖𝑧𝑒!"#$%& = 0 𝒐𝒓 𝑠𝑖𝑧𝑒!"#$ = 0  
 

at the preamble of the algorithm in Listing 1 is an 
optimization that shortcuts the algorithm if either the stripe 
size or file size is 0. In either case, the algorithm should 
conclude immediately and an empty mapping of stripes 
should be returned. By adding this optimization in the 
preamble of the algorithm, the remaining portion of the 
algorithm can assume, using De Morgan’s Law, that the 
following condition holds, 
 

𝑠𝑖𝑧𝑒!"#$%& ≠ 0 𝒂𝒏𝒅 𝑠𝑖𝑧𝑒!"#$ ≠ 0  
 

simplifying the core of the striping algorithm. 

B. Solution Architecture 

The main disadvantage of the conceptual solution 
presented in section 3 is that it is centralized about the 
recovery agent, and therefore, all persistent targets (the 
MDT and the OSTs) must be directly connected to the 
agent, or to the AMRT and AOFRTs, which are in turn 
connected to the agent. As the number of OSTs on which a 
file is striped increases, this solution degrades and becomes 
practically infeasible. The improved, distributed solution 
architecture is illustrated in Figure 5. 

Instead of connecting each OST to the recovery agent, 

(1) 

Figure 5. Using the MapReduce architecture, the stripes that constitute the recovered file flow from each OSS, managing an OST on 
which the objects reside, to the recovery agent through a series of reductions, ultimately resulting in the complete, recovered file. 
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a PSC is placed on each of the OSSs, which decouples the 
agent from direct contact with each of the OSTs containing 
objects of interest. When a recovery is initiated, the 
recovery agent recovers the metadata for the file of interest 
and stores it, keyed by the identifier for the file to recover, 
in a metadata store that is accessible by the PSC on each 
OSS. The recovery agent then informs the PSC on each of 
the OSSs (all PSCs) that a recovery has been initiated, 
supplying the identifier for the file to recover. The PSCs 
then obtain the metadata for this file and provide it to the 
Mapper component. The Mapper component then uses the 
metadata to decide if the objects for the file are contained 
(or, were contained prior to unlinking) on any of the OSTs 
managed by the OSS on which the Mapper resides. 

If the OSS on which the Mapper resides does not 
manage any OSTs containing the objects for the file to be 
recovered, the recovery request completes on that OSS. If, 
instead, the Mapper discovers that the OSTs managed by 
the OSS on which the Mapper resides contain objects that 
make up the file, the Mapper then uses the AOFRT on each 
OSS to recover these objects. Once all the pertinent objects 
have been recovered, the objects, along with the metadata 
for the file to be recovered, are supplied to the PSC, which 
produces a map, where the keys are the stripe indices for 
the stripes contained in the supplied object and the value 
for each key is the stripe data corresponding to the stripe 
index. The PSC then returns this map (for each object it is 
supplied) to the Mapper, which then forwards these maps 
onto the reducer.  

The reducer then combines and sorts these maps to 
produce a complete set of all stripes for the file to be 
recovered. This complete stripe set is then returned to the 
recovery agent that initiated the recovery process. The 
recovery agent can then obtain the data for the file by 
reading the value for each map entry, in order of the index. 
For example, the value for index 0 is read, then the value 
for index 1 is read, and so forth. At the completion of this 
process, the recovered file resides on the recovery agent in 
accordance with the purpose of the recovery process. 

C. Notes & Improvements 

There are some important notes to consider in this 
solution architecture. First, the PSC has two main 
responsibilities: (1) to act as the point-of-contact between 
the OSS and the recovery agent, and (2) to extract and map 
the stripes obtained from the objects recovered by the 
AOFRT. These responsibilities are disparate beyond the 
fact they both pertain to the recovery of a file, and 
therefore, the former responsibility can be divided into a 
secondary component, called the Point-of-Contact 
Component (PCC). This PCC is then responsible for 
obtaining the metadata from the metadata store on the 
recovery agent and passing this metadata to the Mapper 
component. Using this scheme, the Mapper only uses the 
PSC as a delegate from which the mapped stripes for the 

recovered objects are obtained. This improved decoupling 
is illustrated in Figure 63. 

Apart from this improvement of the PSC, it is 
important to note that the number of reducers in this 
architecture is not fixed (or not simply one, as depicted in 
Figure 5). Instead, as is part of the MapReduce 
architecture, the number of reducers can scale to meet the 
needs of the recovery process. For example, if a small file 
to be recovered is striped across only a few OSTs, then 
only a few reducers will be needed. If instead, a very large 
file to be recovered is striped across a large number of 
OSTs, then many reducers can be used to distributed the 
reduction process and offload to required work on a large 
number of compute nodes. In a sense, the distributed 

Three-Step Recovery Solution can be scaled to meet the 
challenge of theoretically recovering any size file with any 
type of striping pattern (e.g. large number of objects or 
small number of objects). 

5 Conclusion 
Although a great deal of research has been completed 

in previous decades on distributed file systems, primarily 
the Lustre distributed file system, a gap has formed in the 
research of technologies that support these complex 
systems. Foremost among these research disparities is the 
forensics and file recovery techniques surrounding the 
Lustre file system. This paper serves the purpose of filling 
this gap and providing an implementable solution 
architecture that can be used to create a distributed 
resolution to this naturally distributed problem. 

At the time of writing, the solution architecture 
described in this paper has not been implemented in its 

                                                             
3 The solution architecture does not make this distinction, as the 
purpose of Figure 5 is to provide a conceptualized, distributed 
solution, rather than design and optimize the intricacies of the 
solution. 

Figure 6. By dividing the two responsibilities of the PSC into the 
PCC and PSC, respectively, the PSC maintains higher cohesion 
and increases the singularity of its purpose. 
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entirety, but this does not detract from its practically and 
pragmatism. To the contrary, the main algorithm that 
makes this solution possible, as described in Listing 1, has 
been implemented in a simulated environment and tested 
using a suite of automated tests. The source code for the 
implementation of this algorithm, along with its battery of 
automated tests, can be found at https://goo.gl/bl6mX6. 

As a supplemental note, the algorithms and solutions 
described in this paper are not strictly limited in scope to 
the Lustre distributed file system. Instead, these solutions 
are described in terms of the general concepts common 
among all metadata-based file systems and therefore can be 
extended to any metadata-based distributed file system by 
replacing the Lustre-specific terminology used in this paper 
with the respective terminology of the metadata-based 
distributed file system for which this solution is ported. 
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