
1

2

Key points:

+ Firmware upgrade takes 5 days.

+ Also allowing several weeks testing time

+ Already have the storage capacity to store Home elsewhere and keep using the
filesystem in the meantime.

3

Key point:

+ rsync already exists and does the right thing. Just need to parallelize it!

4

Keypoint:

+ reduce rsync to operate on the smallest, atomic unit of work: a file

+ Custom code will manage:

- rsync’s in parallel

- file system traversal in parallel

5

Key points:

+ Two task types:

- SyncDir (walk file system)

- SyncFile (rsync an individual file)

+ Use a distributed task queue to schedule and run tasks in parallel

6

Keypoints:

+ syncdir handles target deletes inline

+ all subdirectories can be processed in parallel

+ syncfile checks metadata so only invoke rsync if necessary

+ dd is more efficient to copy “larger” files because blocksize can be increased

- cannot affect rsync blocksize when copying between local file systems

+ rsync is always invoked if data is copied or if metadata needs update

7

8

Keypoints:

+ tempfile name == source file inode number (FID)

+ tempfile remains until end of psync

+ Necessary for all files when sync’ing a live filesystem (hardlinks can be created at
any point in time)

9

10

Key point:

+ Workaround is to run another psync

11

Key point:

+ Workaround: run another psync

12

13

14

Key Points:

+ Initial sync – data and metadata

+ Resync – mostly metadata

15

Keypoints:

+ synchronization of “Home” file system (ie: mainly small files)

+ syncdir (mainly dir scan) and syncfile run simultaneously

+ acceptance test results generated from mdtest

16

Keypoints:

+ Currently, failed hardlinks and directory mtimes will get fixed on a successive sync

17

18

Keypoints:

+ Filesystem interaction is contained in a Python module. Create a new module for a
different filesystem.

+ Checksum processed by same node that performed rsync could result in read file
from cache instead of from disk

+ Checksum tasks could be isolated to nodes optimized for CPU intensive tasks

19

20

21

