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Abstract—Progressive File Layout (PFL) is a Lustre feature
currently being developed to support multiple striping patterns
within the same file. A file can be created with several non-
overlapping extents, and each extent can have different Lustre
striping parameters. In this paper, we discuss evaluation results
for an early PFL prototype implementation. Results for stream-
ing I/O tests showed performance for PFL files was comparable
to or better than files with standard Lustre striping. When
compared to synthetic dynamic striping, PFL files had better
streaming I/O performance. Additionally, object placement
tests showed that a single PFL layout could be used for files of
widely varying sizes while still producing an object distribution
equivalent to customized stripe layouts. Overall, initial test
results indicate that PFL has the ability to provide a level of
performance across a variety of file sizes that is not achievable
with standard Lustre striping today.

Index Terms—Lustre, parallel file system, file striping.

1. Introduction

Lustre is a popular choice for data storage in High Per-
formance Computing because of its scalable parallel nature.
By striping file contents across many disks (and often across
many servers), high I/O bandwiths can be achieved. This
implementation is particularly well-suited for application
checkpointing and large shared datasets where sequential
I/O patterns are the predominant use case. For such use
cases, some current Lustre deployments have demonstrated
streaming bandwidths of over 1 TiB/second [1].

The striping pattern for a Lustre file is primarily defined
by two parameters: stripe count and stripe size. The stripe
count controls how many Object Storage Targets (OSTs)
the file will be striped across, while the stripe size controls
how much data is written to each OST object in the file’s
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layout before proceeding to the next OST object in RAID-0
fashion. Both parameters must be specified when the file is
created and cannot be changed afterwards. If an application’s
file access pattern is well-known, and the number of clients
accessing the file is fixed, the stripe count and stripe size
can often be chosen to maximize performance. However, as
diverse HPC workloads such as data analytics become more
prevalent, choosing an optimal striping pattern can become
difficult. For example, a file’s contents may consist of a
small header followed by larger contiguous data chunks.
The header might be frequently accessed by many clients
using small random reads while the larger data chunks are
read by only a few clients in a sequential fashion. A single
choice of stripe count and stripe size for the entire file may
not be adequate to serve two very distinct access patterns.
Difficulties can also arise if an estimate of the file’s total size
is not known prior to file creation. Very large files will need
to have large stripe counts to avoid hitting space limitations
on individual OSTs and to increase file I/O bandwidth.
However, choosing a large stripe count for a small file is
unnecessary and could incur performance penalties. Since
the stripe count cannot be changed after the file is created,
how then does one choose an appropriate value if the size
of the file is not known a priori?

To help address some of these issues, Lustre files need
a more flexible way of specifying layouts. Under OpenSFS
contract SFS-DEV-003, the Intel High Performance Data
Division produced a new design [2] as part of the Layout
Enhancement Design project. This design introduced the
concept of a ”composite layout” consisting of a series of
components, each of which covers a specified extent of
the file with its own striping configuration. The composite
layout design forms the basis for a new Lustre feature called
Progressive File Layout (PFL).

2. Progressive File Layout Prototype

The Progressive File Layout feature simplifies the use
of Lustre so that users can expect reasonable performance
for a variety of normal file I/O patterns without the need to
explicitly understand their I/O model or Lustre usage details
in advance. In particular, users do not necessarily need to
know the total size or concurrency of output files in advance
of their creation in order to achieve good performance for



Figure 1. Example PFL Layout

both highly concurrent shared-single-file I/O or for parallel
I/O to many smaller per-process files.

The PFL feature is implemented using composite layouts
for regular files. A composite layout allows a file to have
multiple components, each of which allows specifying a
different layout (stripe count, stripe size, etc.) for non-
overlapping extents of the file. This allows the user or
application to progressively increase the number of OST
objects across which a file is striped as the size of the
file increases beyond specific thresholds. By using a PFL
layout, small files can have only one (or a few) stripes
allocated for the start of the file, while large files can grow
to have stripes allocated across many or all OSTs in the
filesystem. Since the definition of ”small” and ”large” files
can vary by site, user, or application, it is possible to specify
intermediate stages between a small file and a large file so
that the number of stripes in the file can increase in a step-
wise manner as the size grows. The number of sub-layouts
within a PFL file, as well as the number of stripes in each,
is tunable by the user though still subject to implementation
and environmental limitations such as maximum layout size,
number of available OSTs, and alignment of component
extents to stripe boundaries. An example of a 3-component
PFL layout for a file is shown in Figure 1.

A PFL prototype implementation was developed in the
first half of 2015 to allow evaluation of the implementa-
tion complexity and potential performance improvements
that could be achieved using this approach. This prototype
allows exploration of the IO performance characteristics of
composite file layouts and provides a better understanding of
the changes required to the client and server layout handling
code. During the prototype phase, a full design of the PFL
architecture was developed so that implementation could
proceed in multiple phases while ensuring that the code for
each phase was usable by the subsequent phase. The ability
to create, read, write, and unlink files with one or more
components as specified by the user is implemented. This
allows the client to read and write PFL files with different
striping parameters for each component, and the MDS server
to create and destroy files with multiple components. No
OST changes were necessary for this phase of implementa-
tion.

To avoid complexity in the prototype, there is no ability
to automatically allocate objects for uninitialized compo-
nents while the file is being written. For testing purposes,
the layout needs to be extended incrementally in userspace
before each component of the file is written. Also, the

prototype does not have the ability to specify a filesystem-
wide or parent-directory composite layout template that is
inherited by newly created files. Instead, each PFL file
needs to be explicitly created with the desired composite
layout. The prototype also does not include support for The
Lustre file system checker (LFSCK) to detect and correct
inconsistencies in composite layouts.

While the evaluation tests described in this paper used
layouts with progressively increasing stripe counts, it should
be noted that this is not a requirement for PFL. The PFL
design allows the striping parameters of each component to
be specified individually, so a layout with progressively de-
creasing stripe counts or a layout with variable stripe counts
is perfectly valid. For real world scenarios, it is expected that
the PFL layout will be dictated by the requirements of the
user’s application.

3. Evaluation

3.1. Experimental Platforms

3.1.1. LLNL Hyperion. The LLNL Hyperion testbed [3]
contains 32 clients consisting of Dell 6220 servers with
16 cores or Dell 6100 servers with 8 cores. The nineteen
Lustre servers have 2.60 GHz Intel Xeon E5-2670 CPUs and
64 GiB of RAM. All clients and servers contain a Mellanox
DDR IB HCA. For storage, ten NetApp E-5460 controllers
are used with sixty 3 TB drives each. The MDT is configured
as a 10.9 TB RAID-10 4+4 device. Each OST is configured
as a 21.8 TB RAID-6 8+2 device, and there are 2-3 OSTs
per OSS with 52 OSTs in total. The MDT and OSTs are
formatted with ldiskfs, and all clients and servers run Lustre
2.7.52 with PFL patches.

3.1.2. ORNL Lustre Testbed. The ORNL Lustre testbed
consists of 35 Dell R720 servers, two Mellanox SX6036
FDR Infiniband switches, and a SAN. All nodes withn the
testbed run the latest version of CentOS 6. Each server has
two Intel Xeon 2630v2 processors running at 2.6 GHz, a
Mellanox ConnectX-3 single port FDR Infiniband HCA, and
two 500 GB 7200RPM SATA hard drives.

Nineteen nodes are used as clients and have 128 GiB
1600 MHz DDR3 RAM. Clients run a PFL-patched version
of Lustre 2.7.52 built with Mellanox OFED 3.1. One of the
client nodes is used as a login node, two are large-memory
nodes (384 GiB RAM each), and the remaining sixteen
client nodes are used as compute nodes for the tait compute
cluster. Four nodes are used as LNET routers and include an
additional ConnectX-3 FDR HCA. Two nodes are used as
MDS/MGS nodes in a fail-over pair with six 15,000 RPM
enterprise SAS drives used for MDT storage. The remaining
eight nodes are used as OSS nodes, each having a quad-port
8 Gb Qlogic fibre channel HBA connected to the SAN.

The SAN is composed of 10 pairs of LSI 2680 con-
trollers with each OSS server interfacing with one pair of
controllers. Each controller pair frontends two shelves of
twelve drives each, and all drives are presented as individual
block devices to the OSS servers. Multiple fibre channel



paths are used for performance and redundancy. Each OSS
has 8 OSTs, and each OST is composed of a 3-drive ZFS
zpool. The LNET routers have one connection to each
SX6036. One SX6036 has connections to tait, and the other
has connections to the Lustre server nodes.

3.2. PFL Performance on Hyperion

Initial performance tests for the PFL prototype were con-
ducted on the LLNL’s Hyperion test cluster. For assessing
the file I/O performance, the IOR benchmark [4] was used.
The IOR tests used the POSIX interface, and each test was
carried out 5 times. Sixteen test threads were launched on
each test client. Single client and 32 client test cases were
evaluated for the file-per-process mode for read and write
access. Each thread wrote or read 4 GB of data to ensure
client-side caching effects were negated. For each read or
write operation, a 2 MB I/O transfer size was used. Figure 2
shows the file per process results and Figure 3 shows shared
single file test results. Error bars are included for each
measurement at plus and minus one standard deviation of
the sample population of five test runs.

For these IOR tests, three different PFL layouts were
used along with two traditional layouts. The traditional
Lustre file layouts used either a single OST (stripe=1) or all
OSTs in the file system (stripe=-1). The “PFL small” layout
has a single component that uses one OST for the entire
file. This is the PFL equivalent of the “stripe=1” traditional
layout. For the “PFL med” layout, two components are used.
The first component uses a single OST for the first 16 MB of
the file while the second component uses four OSTs for the
remainder of the file. The “PFL large” layout is similar to the
“PFL med” layout except that the second component stops
at 128 MB, and a third component is added to use 47 OSTs
for the remainder of the file. In total, the three components
of the “PFL large” layout span 52 OSTs, making this layout
the PFL equivalent of the “stripe=-1” traditional layout.

The single client file per process test shown in Fig-
ure 2a is intended to highlight that maximum performance is
achieved for multiple application threads/processes writing
to separate files when using only a single stripe per file.
This places all of the I/O for each thread onto a single OST,
and minimizes the amount of contention at each OST. The
“stripe=1” results show the optimum performance possible
for applications writing in this mode. The “PFL small” files
also have one stripe per file, and the results show that the
performance of these files is near the “stripe=1” optimal per-
formance (within testing variance). Write performance for
“PFL med” and “stripe=-1” are lower because these layouts
use more OSTs, resulting in more contention. However, the
impact is relatively low because there are only 16 threads
writing to these files, but there are 52 OSTs to handle this
load, and the writes can complete asynchronously. This is in
contrast to the read performance results shown in Figure 2b
where OST contention results in much lower performance
for “PFL med” and “stripe=-1”. As with write performance,
the read performance for “PFL small” and “stripe=1” are
comparable.
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Figure 2. IOR file per process test results on LLNL’s Hyperion test cluster
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Figure 3. IOR single shared file test results on LLNL’s Hyperion test cluster

By increasing IOR to 512 threads over 32 clients, we
begin to see larger differences in performance. The results
for write performance are shown in Figure 2c, and here
we see a bigger discrepancy between the “stripe=1” and
“stripe=-1” performance due to OST contention. Write per-
formance for “PFL med” is better than “stripe=-1” because
fewer OSTs are used for each file. The “PFL small” write
performance is unusual in that it shows reduced performance
compared to “stripe=1”. Both show significant variance and
it is believed that this variability is an artifact of the test
system being used concurrently for other testing, causing
the poor “PFL small” write performance. Results for read
performance, seen in Figure 2d, show “PFL small” in line
with “stripe=1”. Once again, performance for “stripe=-1” is
much lower than “stripe=1” due to OST contention.

When many clients are trying to read and write from
a single large file, the performance bottleneck is based on
the number of OSTs over which the file is striped. Having
only a single stripe for such files (the default for Lustre)
severely limits the bandwidth available to the application
as can be seen in Figure 3. In order to get the maximum
performance, the user or application would need to explicitly
specify a higher stripe count. If the user is unaware of
the need to explicitly specify a higher stripe count for the
shared output file, the application I/O performance will be

TABLE 1. STRIPING PATTERNS FOR WATERMARK STRIPING TESTS

Pattern Name Stripe Layout
IOR.1 0-4 TiB: 4 stripes
IOR.2 0-4 TiB: 8 stripes
IOR.3 0-4 TiB: 16 stripes
IOR.4 0-1 TiB: 4 stripes; 1-4 TiB: 8 stripes
IOR.5 0-1 TiB: 4 stripes; 1-4 TiB: 16 stripes
IOR.6 0-1 TiB: 4 stripes; 1-2 TiB: 8 stripes; 2-4 TiB: 16 stripes

significantly below the possible peak value. In this case,
the “stripe=1” performance is only 3.4% of the “stripe=-1”
performance, which is in line with the expected 1/52 = 1.9%
theoretical performance. The “PFL large” and “stripe=-1”
files are striped over 52 OSTs in the filesystem. However,
as this test is intended to simulate a file that has grown
through the “PFL small” and “PFL med” regions, there are
only 47 stripes at the end of the “PFL large” file where most
of the 512 threads are writing. The expected aggregate “PFL
large” performance is about 47/52 = 90% of the “stripe=-1”
file. The IOR write test results show the actual performance
of “PFL large” at approximately 94% of “stripe=-1”. The
IOR shared file read test results show a similar trend.

3.3. Comparing PFL to Synthetic Dynamic Strip-
ing

PFL provides the ability to assign different Lustre strip-
ing characteristics to contiguous segments of a file as it
grows. In previous work [5], the ORNL Lustre testbed was
used to evaluate the effects of a synthesized form of such
dynamic striping using a watermark-based strategy where
the stripe count is increased once a file’s size exceeds one
of the chosen watermarks. This evaluation did not require
modifications to the Lustre client or server software, as we
simulated dynamic striping by splitting files into segments
at the predetermined watermarks. Segments were stored as
files in directories with different striping configurations. For
example, if there are two watermarks at 1 GiB and 10 GiB
and dynamic striping is to be applied to a 14 GiB file,
then three file segments are created from the original file
representing: (1) the first 1 GiB of the file, (2) the next 9 GiB
of file data between offsets 1 GiB and 10 GiB, and (3) the
remaining 4 GiB of the file beyond the 10 GiB offset. Each
file segment is then written to a directory having a specific
stripe count and stripe width. Benchmark applications were
modified to use a simple I/O interposition layer that makes
the collection of file segments appear as a single file.

One of the benchmark applications used was IOR. For
the IOR tests, six different striping patterns were used: three
with standard striping and three with dynamic watermark
striping. These striping patterns are listed in Table 1. Each
IOR test used 64 processes spread evenly across 16 nodes to
read and write a shared 4 TiB file with a 64 GiB block size.
This same test was run five times for each striping pattern.

With the recent PFL prototype implementation, it is
possible to run these same tests, but instead of splitting
a single file across several directories with different stripe
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Figure 4. Performance Comparison of Synthetic Dynamic Striping vs. PFL

counts, we can now use a PFL layout to achieve varying
stripe counts within the same file. The performance of PFL
can then be compared to the previous results of synthetic
dynamic striping. This comparison is shown in Figure 4.
The values shown represent the median values of the five
runs for each IOR test.

Although the data shows that PFL outperforms synthetic
striping for both reads and writes, care must be taken
when making such a direct comparison. First, the versions
of Lustre used in these tests were different. For synthetic
striping, the clients used Lustre 2.5.2 while the servers ran
Lustre 2.5.3. For PFL striping, all clients and servers ran
a patched version of Lustre 2.7.52. Lustre 2.7 contains
some performance improvements which might affect the
results. Additionally, the MDS server for the PFL test was
configured to use only a round-robin allocation scheme
when assigning OSTs to components of a file. This differs
from the default allocation scheme used by Lustre which
tends to select OSTs that have the most free space available.
The main conclusion to draw from this data is that the
performance of the PFL protoype follows the same overall
pattern as the synthetic dynamic striping tests. As more
stripes are added to the file, performance increases.

3.4. PFL Object Placement

One issue commonly seen when managing a Lustre file
system is the use of poor striping patterns for files. Users
do not always choose file stripe counts that are appropriate
for the size of the file being created. Often the files have
a much smaller stripe count than is recommended for large
files which can lead to imbalanced usage of certain OSTs,
or in the worst cases, can cause OSTs to completely fill
up. Likewise, it is possible that a user may choose to use
a very large stripe count for a small file which can be
detrimental to performance. These sub-optimal file layouts
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TABLE 2. DISTRIBUTION OF FILE SIZES

File Size Percentage Stripe Count
1 MB 70% 1
64 MB 20% 4
128 GB 9% 16
4 TB 1% 48

are not necessarily the result of conscious choices by the
user, but simply result from the use of inherited file layouts.

With PFL, it is possible to define a file layout that uses
an increasing stripe count for different extents of the same
file making it suitable for a wide variety of file sizes. To test
how well this might work, we begin by specifying a file size
distribution for the test. Based on statistics from the OLCF
Atlas file systems, we arrive at the approximate distribution
shown in Table 2. For each file size, we also specify an
”ideal” stripe count that might be used for a traditional
Lustre striping layout. These stripe counts were chosen to
be suitable values for the 64-OST Lustre file system in the
ORNL testbed.

A set of IOR scripts was created to produce files of the
target size in relative proportion as listed in the table. These
scripts were run until the file system was approximately 90%
full. Information about each OST’s usage (both capacity
and inodes) was gathered to create a profile of this best
case scenario where all files in the file system are properly
striped based on file size. The test was then repeated using
PFL to specify a single layout that would be used by all
files regardless of size. The PFL layout components were
chosen to match the file distribution. In other words, the
first component of the layout used a single stripe for the
first 1 MB of the file, the second component used 4 stripes
for the 1-64 MB range, etc. OST usage information for this
PFL test was gathered to compare with the first test case.
In this way, we can begin to determine how closely a single
PFL specification might match our ideal scenario.
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Figure 5 shows the distribution of OST usage for these
two tests. While there are some variations, overall the dis-
tribtion of file objects is very similar. The traditional striping
results in an average OST usage of 90.31% with a standard
deviation of 3.26%. For the PFL tests, the average OST
usage is 90.29% with a standard deviation of 3.10%. Based
on the results of this small-scale test, it appears that using
a single PFL layout for a wide variety of file sizes might
result in object placement across OSTs that is near optimal.

In addition to the OST usage distribution, we can look
at the number of inodes allocated on each OST. The inode
distribution for the two tests is shown in Figure 6. In both
cases, inode usage across the OSTs is reasonably uniform.
The most obvious difference is that the inode distribution for
the PFL test is significantly higher than the standard Lustre
striping. This is an artifact of the current PFL prototype im-
plementation which requires that allocation of OST objects
for each layout component occur at file creation time. This
means that any file, regardless of size, will have 69 OST
objects allocated to it.

4. Conclusion

Progressive File Layouts provide increased flexibility in
defining Lustre file striping without sacrificing performance.
IOR tests show PFL performance comparable to or bet-
ter than traditional Lustre striping. In particular, IOR file
per process performance was similar for “PFL small” and
“stripe=1” while IOR shared file performance was nearly
identical for “PFL large” and “stripe=-1”. This demonstrates
that an appropiately chosen PFL layout could achieve nearly
optimal performance for both test cases, something that is
not possible with traditional Lustre layouts. Object place-
ment test results reinforce this idea by showing that a single
PFL layout used for a wide range of file sizes can optimally
distribute OST objects. The current prototype implementa-

tion also exhibits the same performance characteristics that
were expected based on previous synthetic striping tests.

While further work is needed to make PFL ready for
production and implement missing featrures, these initial
evaluation tests illustrate the possible utility of Progressive
File Layouts. Advanced users will have more options for
tuning Lustre file striping parameters to optimize their work-
loads. At the same time, naive users can expect reasonable
performance over a variety of I/O workloads simply by using
the same default PFL layout.
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