
ORNL is managed by UT-Battelle
for the US Department of Energy

Oak Ridge National Laboratory
Computing and Computational Sciences Directorate

Rick Mohr (University of Tennessee)

Michael Brim (ORNL)

Sarp Oral (ORNL)

Andreas Dilger (Intel)

Evaluating Progressive
File Layouts for Lustre

Computational Research &
Development Programs

Agenda

• Progressive File Layout (PFL) Overview
• PFL Prototype Implementation
• Streaming I/O Tests
• Comparison to Synthetic Dynamic Striping
• Object Placement Testing

Computational Research &
Development Programs

Lustre File Layouts Today

• Several Lustre parameters control file layout
–  Stripe size
–  Stripe count
–  Stripe index
–  Pool

•  In practice, stripe size and count are primarily used
• Layout constraints

– One set of parameters for entire file
–  Parameters chosen at time of file creation
– Only one layout type (RAID-0) supported

Computational Research &
Development Programs

Layout Enhancement

• Under OpenSFS contract SFS-DEV-003, Intel’s
High Performance Data Division produced a new
design for file layouts

• High Level Design document describes several new
layouts
–  Composite layouts
–  RAID layouts
–  Compact layouts
–  Large layouts

http://wiki.lustre.org/Layout_Enhancement_High_Level_Design

Computational Research &
Development Programs

Progressive File Layout (PFL)

• Progressive File Layout feature is built using
Composite Layouts
–  File layout is described by a series of components
–  Each component covers a non-overlapping extent of the

file
–  Each component has its own striping parameters

…..

1 stripe 4 stripes 32 stripes

[0,2MB) [2MB,256MB) [256MB,EOF)

Computational Research &
Development Programs

Progressive File Layout Goals

• Single layout definition for multiple file sizes
–  Reasonable performance for a variety of I/O patterns
–  Simplify Lustre usage for novice users

• Change stripe layout as file grows
• More striping options for advanced users

–  Customization for non-uniform files
–  Different regions of file on different storage

• Stepping stone to more features in the future
–  HSM for file components
–  New uses for Composite Layouts

Computational Research &
Development Programs

PFL Prototype Implementation

•  Intel, under contract from ORNL, has been
developing PFL feature

• A prototype implementation was delivered in the first
half of 2015 for evaluation and testing
–  Some limits on functionality

•  No dynamic allocation of new components
•  No support for setting PFL on directories

• Continuing development
–  PFL inheritance from parent directory
–  Integration with existing Lustre code base

Computational Research &
Development Programs

PFL Evaluation Tests

• Several different tests were run to evaluate the
functionality and performance of PFL prototype

• Streaming IOR and mdtest (Intel)
–  Comparison with traditional Lustre striping
–  Single client and multiple clients
–  Shared file and file per process

• Comparison to Synthetic Dynamic Striping (ORNL)
• Object placement (ORNL)

–  Difference in OST object placement between PFL and
traditional striping

Computational Research &
Development Programs

Intel Testing

•  Intel’s tests were run on Hyperion at LLNL
–  32 Lustre clients
–  16 Lustre servers with 52 OSTs (ldiskfs)
– Mellanox DDR Infiniband

•  IOR
–  Single client (16 threads) file per process
–  32 clients (512 threads) file per process
–  32 clients (512 threads) shared file
–  Each thread reads/writes 4 GB of data

Computational Research &
Development Programs

Test File Layouts

• Tests compared several different layouts
–  Traditional

•  stripe_count = 1 and stripe_count = -1
–  PFL small

•  [0,EOF) à stripe_count=1

–  PFL medium
•  [0,16M) à stripe_count=1
•  [16M, EOF) à stripe_count=4

–  PFL large
•  [0,16M) à stripe_count=1
•  [16M, 128M) à stripe_count=4
•  [128M, EOF) à stripe_count=47

Computational Research &
Development Programs

0	 500	 1000	 1500	 2000	 2500	 3000	

stripe=1	
stripe=-1	
PFL	small	
PFL	med	

MB/s	

16	threads	-	Single	Client	
IOR	File	per	Process	Write	

•  Performance of PFL small and stripe=1 are comparable
•  Performance of PFL med is lower than stripe=-1, but they are within

error margins

Computational Research &
Development Programs

0	 1000	 2000	 3000	 4000	

stripe=1	
stripe=-1	
PFL	small	
PFL	med	

MB/s	

16	threads	-	Single	Client	
IOR	File	per	Process	Read	

•  Performance of PFL small is slightly better than stripe=1, but still
comparable

•  Performance of stripe=-1 is lower than PFL med due to more
contention at OST level

Computational Research &
Development Programs

0	 5000	 10000	 15000	

stripe=1	

stripe=-1	

PFL	small	

PFL	med	

MB/s	

512	Threads	-	32	Clients	
IOR	File	Per	Process	Write	

•  Performance of stripe=-1 is less than stripe=1 due to increased
contention on the OSTs

•  Performance for PFL small is less than stripe=1 (which is not expected).
Large variances may indicate contention from other processes on test
file system.

Computational Research &
Development Programs

0	 2000	 4000	 6000	 8000	 10000	

stripe=1	

stripe=-1	

PFL	small	

PFL	med	

MB/s	

512	Threads	-	32	Clients	
IOR	File	Per	Process	Read	

•  Performance of PFL small is similar to stripe=1 although somewhat
less. (Again, large variance for stripe=1 may indicate contention.)

•  Performance of PFL med is better than stripe=-1 due to less contention
on OSTs

Computational Research &
Development Programs

0	 2000	 4000	 6000	 8000	 10000	

stripe=1	

stripe=-1	

PFL	Large	

MB/s	

512	Threads	-	32	Client	
IOR	Shared	File	Write	

•  Performance for stripe=1 much less than stripe=-1 (as expected)
•  Performance of PFL large is on par with stripe=-1

Computational Research &
Development Programs

ORNL Lustre Testbed

• 8x OSS Servers (Dell R720)
–  2x Intel Xeon 2630 v2
–  64 GB RAM
–  250 GB 7.2K RPM SATA3 drive
– Mellanox ConnectX-3 FDR HCA

• 2x MDS Servers (Dell R720)
–  Same as OSS servers except:

•  128 GB RAM
•  6x 300 GB 15K RPM SAS drives

• 8 OSTs per OSS server
– OSTs use ZFS backend

Computational Research &
Development Programs

Synthetic Dynamic Striping

• Prior to the PFL prototype, a simulated form of
dynamic striping was tested
–  Files were split into smaller components
–  Each component was created in a different directory with

different stripe counts
–  Applications were modified to perform I/O to file

components
•  IOR
•  BLAST

http://arxiv.org/pdf/1504.06833v1.pdf

Computational Research &
Development Programs

Dynamic Striping Test Cases

•  IOR POSIX shared file
–  16 compute nodes with 4 processes per node
–  4 TB total file size

Computational Research &
Development Programs

PFL vs. Synthetic Results

 500

 1000

 1500

 2000

 2500

 3000

 3500

IOR.1 IOR.2 IOR.3 IOR.4 IOR.5 IOR.6

I/
O

 B
an

d
w

id
th

 (
M

iB
/s

ec
o
n
d
)

Effective I/O Bandwidth for Watermark Striping Configurations

Syn-Write
PFL-Write
Syn-Read
PFL-Read

Computational Research &
Development Programs

Object Placement Testing

• Users often choose poor striping patterns
–  Large file, small stripe count àImbalanced OST usage
–  Small file, large stripe count à Sub-optimal performance

• PFL can use increasing stripe count to
accommodate multiple file sizes
–  How does using a single PFL layout for all files compare

to “ideal” traditional striping?

• Test scenario:
–  Create files with traditional striping
–  Create files with single PFL layout
–  Compare distribution of OST usage

Computational Research &
Development Programs

Object Placement Testing (cont.)

• Choose file size distribution (based on OLCF stats)

• Choose PFL Layout
•  [0, 1MB) stripe_count=1
•  [1MB, 64MB) stripe_count=4
•  [64MB, 128GB) stripe_count=16
•  [128GB, EOF) stripe_count=48

• Fill file system to 90% capacity

File Size Percentage Stripe Count
1 MB 70% 1
64 MB 20% 4
128 GB 9% 16
4 TB 1% 48

Computational Research &
Development Programs

Object Placement Results

•  Distribution of OST utilization for PFL files is very similar to the
distribution seen using ideal striping parameters

 0

 2

 4

 6

 8

 10

 12

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

O
S

T
 c

o
u
n
t

Utilization (% used of total space available)

Distribution of OST Utilization for 90%-full File System (64 OSTs)

Std
PFL

Computational Research &
Development Programs

Summary

• Progressive File Layouts provide additional flexibility
when defining the striping configuration for a file

• PFL performance appears to be on par with
traditional Lustre (and in some cases better)

• Single PFL layout can be effectively used for files of
widely varying sizes
–  Can help simplify Lustre usage for users
– Will save some headaches for sys admins

Computational Research &
Development Programs

Future Work

• PFL Implementation
–  Layout inheritance from parent directory
–  Define PFL layout as default for file system
–  Improved OST allocator
–  Dynamic component instantiation

• PFL Testing
– More data intensive workloads
–  Increase scaling

Computational Research &
Development Programs

This work was supported by the United States
Department of Defense (DoD) and used resources
of the Computational Research and Development
Programs at Oak Ridge National Laboratory.

Acknowledgements

Questions?

Computational Research &
Development Programs

