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Agenda 

• Progressive File Layout (PFL) Overview 
• PFL Prototype Implementation 
• Streaming I/O Tests 
• Comparison to Synthetic Dynamic Striping 
• Object Placement Testing 
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Lustre File Layouts Today 

• Several Lustre parameters control file layout 
–  Stripe size 
–  Stripe count 
–  Stripe index 
–  Pool 

•  In practice, stripe size and count are primarily used 
• Layout constraints 

– One set of parameters for entire file 
–  Parameters chosen at time of file creation 
– Only one layout type (RAID-0) supported 
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Layout Enhancement 

• Under OpenSFS contract SFS-DEV-003, Intel’s 
High Performance Data Division produced a new 
design for file layouts 

• High Level Design document describes several new 
layouts 
–  Composite layouts 
–  RAID layouts 
–  Compact layouts 
–  Large layouts 

http://wiki.lustre.org/Layout_Enhancement_High_Level_Design 
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Progressive File Layout (PFL) 

• Progressive File Layout feature is built using 
Composite Layouts 
–  File layout is described by a series of components 
–  Each component covers a non-overlapping extent of the 

file 
–  Each component has its own striping parameters 

 

….. 

1 stripe 4 stripes 32 stripes 

[0,2MB) [2MB,256MB) [256MB,EOF) 
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Progressive File Layout Goals 

• Single layout definition for multiple file sizes 
–  Reasonable performance for a variety of I/O patterns 
–  Simplify Lustre usage for novice users 

• Change stripe layout as file grows 
• More striping options for advanced users 

–  Customization for non-uniform files 
–  Different regions of file on different storage 

• Stepping stone to more features in the future 
–  HSM for file components 
–  New uses for Composite Layouts 
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PFL Prototype Implementation 

•  Intel, under contract from ORNL, has been 
developing PFL feature 

• A prototype implementation was delivered in the first 
half of 2015 for evaluation and testing 
–  Some limits on functionality 

•  No dynamic allocation of new components 
•  No support for setting PFL on directories 

• Continuing development 
–  PFL inheritance from parent directory 
–  Integration with existing Lustre code base 
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PFL Evaluation Tests 

• Several different tests were run to evaluate the 
functionality and performance of PFL prototype 

• Streaming IOR and mdtest (Intel) 
–  Comparison with traditional Lustre striping 
–  Single client and multiple clients 
–  Shared file and file per process 

• Comparison to Synthetic Dynamic Striping (ORNL) 
• Object placement (ORNL) 

–  Difference in OST object placement between PFL and 
traditional striping 
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Intel Testing 

•  Intel’s tests were run on Hyperion at LLNL 
–  32 Lustre clients 
–  16 Lustre servers with 52 OSTs (ldiskfs) 
– Mellanox DDR Infiniband 

•  IOR 
–  Single client (16 threads) file per process 
–  32 clients (512 threads) file per process 
–  32 clients (512 threads) shared file 
–  Each thread reads/writes 4 GB of data 
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Test File Layouts 

• Tests compared several different layouts 
–  Traditional 

•  stripe_count = 1 and stripe_count = -1 
–  PFL small 

•  [0,EOF) à stripe_count=1 

–  PFL medium 
•  [0,16M) à stripe_count=1 
•  [16M, EOF) à stripe_count=4 

–  PFL large 
•  [0,16M) à stripe_count=1 
•  [16M, 128M) à stripe_count=4 
•  [128M, EOF) à stripe_count=47 
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•  Performance of PFL small and stripe=1 are comparable 
•  Performance of PFL med is lower than stripe=-1, but they are within 

error margins 
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•  Performance of PFL small is slightly better than stripe=1, but still 
comparable 

•  Performance of stripe=-1 is lower than PFL med due to more 
contention at OST level 
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•  Performance of stripe=-1 is less than stripe=1 due to increased 
contention on the OSTs 

•  Performance for PFL small is less than stripe=1 (which is not expected).  
Large variances may indicate contention from other processes on test 
file system. 
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•  Performance of PFL small is similar to stripe=1 although somewhat 
less.  (Again, large variance for stripe=1 may indicate contention.) 

•  Performance of PFL med is better than stripe=-1 due to less contention 
on OSTs 
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•  Performance for stripe=1 much less than stripe=-1 (as expected) 
•  Performance of PFL large is on par with stripe=-1 
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ORNL Lustre Testbed 

• 8x OSS Servers (Dell R720) 
–  2x Intel Xeon 2630 v2 
–  64 GB RAM 
–  250 GB 7.2K RPM SATA3 drive 
– Mellanox ConnectX-3 FDR HCA 

• 2x MDS Servers (Dell R720) 
–  Same as OSS servers except: 

•  128 GB RAM 
•  6x 300 GB 15K RPM SAS drives 

• 8 OSTs per OSS server 
– OSTs use ZFS backend 
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Synthetic Dynamic Striping 

• Prior to the PFL prototype, a simulated form of 
dynamic striping was tested 
–  Files were split into smaller components 
–  Each component was created in a different directory with 

different stripe counts 
–  Applications were modified to perform I/O to file 

components 
•  IOR 
•  BLAST 

http://arxiv.org/pdf/1504.06833v1.pdf 
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Dynamic Striping Test Cases 

•  IOR POSIX shared file 
–  16 compute nodes with 4 processes per node 
–  4 TB total file size 
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PFL vs. Synthetic Results 
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Object Placement Testing 

• Users often choose poor striping patterns 
–  Large file, small stripe count àImbalanced OST usage 
–  Small file, large stripe count à Sub-optimal performance 

• PFL can use increasing stripe count to 
accommodate multiple file sizes 
–  How does using a single PFL layout for all files compare 

to “ideal” traditional striping? 

• Test scenario: 
–  Create files with traditional striping 
–  Create files with single PFL layout 
–  Compare distribution of OST usage 
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Object Placement Testing (cont.) 

• Choose file size distribution (based on OLCF stats) 

• Choose PFL Layout 
•  [0, 1MB) stripe_count=1 
•  [1MB, 64MB) stripe_count=4 
•  [64MB, 128GB) stripe_count=16 
•  [128GB, EOF) stripe_count=48 

• Fill file system to 90% capacity 

File Size Percentage Stripe Count 
1 MB 70% 1 
64 MB 20% 4 
128 GB 9% 16 
4 TB 1% 48 
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Object Placement Results 

•  Distribution of OST utilization for PFL files is very similar to the 
distribution seen using ideal striping parameters 
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Summary 

• Progressive File Layouts provide additional flexibility 
when defining the striping configuration for a file 

• PFL performance appears to be on par with 
traditional Lustre (and in some cases better) 

• Single PFL layout can be effectively used for files of 
widely varying sizes 
–  Can help simplify Lustre usage for users 
– Will save some headaches for sys admins 
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Future Work 

• PFL Implementation 
–  Layout inheritance from parent directory 
–  Define PFL layout as default for file system 
–  Improved OST allocator 
–  Dynamic component instantiation 

• PFL Testing 
– More data intensive workloads 
–  Increase scaling 
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