
A 12 Step Program for Lustre Filesystem 
Addiction

Shawn Hall and Kent Blancett



BP’s HPC environment

• Vital to advancing BP’s seismic imaging capabilities

• 3.8 PF of computing power

• 1.3 PB of memory

Courtesy: BP (https://flic.kr/p/gT3aNU)



BP’s Lustre environment

• 5300 Lustre clients (no lnet routers)

• All compute systems see all storage

• 20 PB across 4 Lustre file systems (DDN storage)

• Lustre 2.5.27 on servers

• Mix of Lustre 2.3.60, 2.4.1 + patches, 2.5.58 on clients

• 40 Gigabit Ethernet Arista core network with 40 GbE to Lustre servers and 
10 GbE from top of rack to compute nodes

• No systematic backups and no purge policy



I/O patterns

• Majority of work uses key-value style data, keys in small file, values in 
large file

• Often 1 or M → N input and N → N or M output

• Most applications are written in-house

• Like everyone else we have the typical set of degenerate workloads



The 12 Steps



1. Designing

• When designing a Lustre system, need to balance all components

• Think about data flow from disk to client – are you getting the maximum 
performance from your disks?

• Don’t forget about caching – e.g. do you have enough network bandwidth 
to make use of the Lustre read cache?

• Do you have single points of failure?



2. Preparing

• Will users require NFS/CIFS access to Lustre?

− If so, be prepared for instability

− Firewalls come in handy for blocking users who abuse this service

• What should the default stripe count be?

− For us, 𝑑𝑒𝑓𝑎𝑢𝑙𝑡	𝑠𝑡𝑟𝑖𝑝𝑒	𝑐𝑜𝑢𝑛𝑡 = 	 123 456789	:;8<=6<9>
123 ?@A	:;8<=6<9>

− Too small and users run into file size limits

− Too small and 1→N reads limited

− Too large and increased file system contention



3. Data protection

• Most of us can’t back up our entire file systems

• Most users don’t think about the safety of their data

• What do we do at BP?

− Provide straightforward facilities for users to back up their own data and 
assistance to anyone interested

− Help identify important files for users

− Capture full file listing of filesystems nightly

− Including inode numbers

− Proved incredibly useful in last year’s filesystem crash 



4. Education - user

• Teach users the value of backups

• As you get to know the user, you’ll know how much information to give 
them (and what they don’t care to know)

• Provide general rules of thumb for I/O

− Set low default stripe count but allow users to increase

− Plan ahead on stripe count (e.g. wider stripe for 1→N read files)

− Don’t put 100,000+ files in one directory

− Avoid putting log files on Lustre, especially when 2000 nodes are 
simultaneously appending to a single log file



5. Education - administrator

• Storage systems are a critical part of the infrastructure, so they should be 
an equally important part of an admin’s education

• We learn from the community – especially the leaders that are doing 
innovative work

• Try to leverage the tools others have already written

• Lustre administration isn’t passive – Lustre is best managed with active 
learning and improvement



6. Monitoring

• Lustre Monitoring Tool – how is the filesystem performing?

Courtesy: LLNL, http://cdn.opensfs.org/wp-content/uploads/2012/12/400-430_Chris_Morrone_LMT_v2.pdf



7. Monitoring

• xltop – who is using the file system?

• Looking into how jobstats can be useful to us 

Courtesy: TACC, https://wiki.hpdd.intel.com/display/PUB/Third+Party+Tools



8. Monitoring

• Ganglia – what was the past performance?



9. Bag of Tricks

• Sometimes users have hundreds or thousands of jobs that read the same 
input file, which hammers the OST (usually mostly hits the cache)

• We occasionally fix this as the job is running if the file being read is small 
enough

− Use ltop to find what OSTs are getting hit

− Use xltop to make an educated guess at what job(s) are causing the load

− Go to a compute node in the job and use lsof to find the potential files

− Determine the file by using lfs getstripe to check the striping of 
each file and compare to the OSTs that are getting hit

− Run lfs migrate --block -c <new stripe count> <file>

− This does a copy and some magic to change the layout of an in-use 
(reads, not writes) file (LU-2445)



10. Bag of Tricks

• Especially on filesystems with no purge policies, they can easily fill up

• We try to help this by

− Adjust the threshold at which Lustre switches from the round robin to 
the weighted allocator lctl set_param lov.lustre?-MDT0000-
mdtlov.qos_threshold_rr=??

− Adjust the weighting between using free space and location with lctl
conf_param lustre?-MDT0000.lov.qos_prio_free=??

− Do whatever we can to shut off object creation (LU-4825)

− Find large files on full OSTs with lfs find /<fsname> -obd
<OSTname> -size +100G -print

− Restripe large files with /usr/bin/lfs_migrate -y -c 
<stripe_count> <filename>



11. Bag of Tricks

• Sometimes Lustre servers will have high load for seemingly no reason

• Use xltop to start looking for suspicious jobs

• See if jobs are getting CPU time

• Strace to see if pauses are on reads and writes



12. Lustre as a Site Wide Filesystem

• Finding combination of supported client and server versions a concern

− We have clients as old as RHEL 5 and clients coming soon using SLES 
12 and/or RHEL 7

• Having a mixed speed Ethernet or Infiniband network also presents 
challenges

− After identifying the problem, we had to propogate proper flow control 
rules across our entire 10/40 GbE network

• Mixed batch and interactive use can be painful for interactive users



Bonus: Our wishlist

• Try out ZFS based Lustre

• Update health scripts for new file systems and make more intelligent

• Enable Lustre jobstats and store them (OpenTSDB?) with graphing 
capabilities (Grafana?)

• Set up Robinhood instance for each file system

18



Questions?

19


