
Securing Lustre with Nodemap and Shared Key
Stephen Simms / Jeremy Filizetti
High Performance File Systems

Indiana University
hpfs-admin@iu.edu

Lustre Ecosystem Workshop
Baltimore, MD

March 8-9 2016

Current Build Instructions for this Tutorial (3/9/2016)

We’ll follow the guide for building Lustre from source provided by Intel:
https://wiki.hpdd.intel.com/pages/viewpage.action?pageId=8126821

We also install: libgssglue libgssglue-devel openssl-devel krb5-libs krb5-devel

After step 3 in the "Preparing the Lustre source”, we branch and patch:
[build@build lustre-release]$ git checkout a3e6b142c074df8ef20cbf3a9d9f7687c9ed9a5f -b shared-key

git fetch http://review.whamcloud.com/fs/lustre-release refs/changes/28/16728/10 && git cherry-pick FETCH_HEAD

git fetch http://review.whamcloud.com/fs/lustre-release refs/changes/97/17597/4 && git cherry-pick FETCH_HEAD

git fetch http://review.whamcloud.com/fs/lustre-release refs/changes/98/17598/4 && git cherry-pick FETCH_HEAD

git fetch http://review.whamcloud.com/fs/lustre-release refs/changes/99/17599/4 && git cherry-pick FETCH_HEAD

git fetch http://review.whamcloud.com/fs/lustre-release refs/changes/00/17600/4 && git cherry-pick FETCH_HEAD

git fetch http://review.whamcloud.com/fs/lustre-release refs/changes/01/17601/4 && git cherry-pick FETCH_HEAD

git fetch http://review.whamcloud.com/fs/lustre-release refs/changes/02/17602/4 && git cherry-pick FETCH_HEAD

git fetch http://review.whamcloud.com/fs/lustre-release refs/changes/50/16950/2 && git cherry-pick FETCH_HEAD

git fetch http://review.whamcloud.com/fs/lustre-release refs/changes/73/18773/1 && git cherry-pick FETCH_HEAD

We include the --enable-gss option to configure during step 1 in the "Configure and build Lustre" section:
[build@build lustre-release]$./configure --with-linux=path_to_linux_source --enable-gss [other-options]

Security and Lustre

• Lustre is widely deployed across disparate
networks

• Security continues to be a major concern in
operations

• There is pressure to mount Lustre system to new
areas while maintaining compliance

Nodemap Use Cases

Nodemap was a technology preview in Lustre 2.7 which will be
completed for the Lustre 2.9 release.

Using Nodemap, UIDs and GIDs provided by remote clients can be
mapped onto a local set of UIDs and GIDs. You may find this useful if:

• You need to prevent UID and GID collisions between clients in
different administrative domains

• Two or more partner organizations would like to share data
• You can limit access from a partner site

Nodemap terms

Nodemap is deployed on the MDS, MGS, and OSS nodes and is invisible
to clients. Key elements include:

• NIDs, to which a unique mapping is defined

• Policy groups, which consist of one or more sets of NIDs

• Two properties, “trust” and “admin”, which can optionally be
applied to a policy group

• A collection of identity maps or idmaps which determine the
translation table for a policy group

Basic setup for Biology lab case

• Bob’s Biology lab runs a locally administered machine with
multiple users.

• Bob wants to mount our Lustre file system locally.
• Only certain users on Bob’s system require access to the

Lustre file system.
• The UIDs and GIDs on Bob’s lab system conflict with other

existing clients that also mount our Lustre file system.

Our goal is to map the UID of one of Bob’s users to that same
user’s UID on our system, and, at the same time, squash access
from all others in Bob’s lab.

Biology lab problem

Biology Server
IP: 172.18.0.14

jwilson
UID/GID 503

ghouse
UID/GID 626

We would like to allow jwilson access
to the Lustre system, but not ghouse.

We have an existing user on our
Lustre system with UID/GID 503, so we
will map jwilson to 20013. The UID
and GID do not have to match -- this
is a simplified example.

Pre-Nodemap setup

From a trusted client, the scratch directory of our Lustre file system looks
like this:

ls -l

total 107096

-rw-r----- 1 5173 2300 7884800 Feb 24 10:58 assemblyres.0001

-rw-r----- 1 5157 2300 7884800 Feb 24 10:58 assemblyres.0002

-rw-r----- 1 5157 2300 7884800 Feb 24 10:58 assemblyres.0003

-rw-r----- 1 5159 2300 7884800 Feb 24 10:58 assemblyres.0004

-rw-r----- 1 6781 2300 7884800 Feb 24 10:58 assemblyres.0005

-rw-r----- 1 8001 20013 10077184 Feb 24 10:57 sampleData1

-rw-r----- 1 8001 20013 15199232 Feb 24 10:57 sampleData2

-rw-r----- 1 8001 20013 17921024 Feb 24 10:58 sampleData3

-rw-r----- 1 8001 20013 3472384 Feb 24 10:58 sampleData4

-rw-r----- 1 9360 3350 23564288 Feb 24 10:59 tset0a

Making a quick map

These commands are issued on the Lustre MGS or MGS/MDS.

Create a policy group
mds01# lctl nodemap_add BiologyMap

Add at least one NID to the policy group
mds01# lctl nodemap_add_range --name BiologyMap --range 172.18.0.14@tcp

Add at least one idmap for the user and group
mds01# lctl nodemap_add_idmap --name BiologyMap --idtype uid --idmap 503:20013

mds01# lctl nodemap_add_idmap --name BiologyMap --idtype gid --idmap 503:20013

Activate the Nodemap feature
mds01# lctl nodemap_activate 1

Biology lab with Nodemap

Our selected user gets mapped, but all other user access is squashed.

Biology	Server
IP:	172.18.0.14

jwilson
UID/GID	503

ghouse
UID/GID	626

Lustre	System

jwilson
UID/GID	20013

ghouse
UID/GID	99

jwilson’s view from mapped Biology server

[jwilson@cli01 scratch]$ id

uid=503(jwilson) gid=503(jwilson) groups=503(jwilson)

[jwilson@cli01 scratch]$ ls -l

total 107096

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0001

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0002

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0003

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0004

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0005

-rw-r----- 1 nobody jwilson 10077184 Feb 24 10:57 sampleData1

-rw-r----- 1 nobody jwilson 15199232 Feb 24 10:57 sampleData2

-rw-r----- 1 nobody jwilson 17921024 Feb 24 10:58 sampleData3

-rw-r----- 1 nobody jwilson 3472384 Feb 24 10:58 sampleData4

-rw-r----- 1 nobody nobody 23564288 Feb 24 10:59 tset0a

[jwilson@cli01 scratch]$ file sampleData1

sampleData1: data

ghouse’s view from mapped Biology server

[ghouse@cli01 scratch]$ id

uid=626(ghouse) gid=626(ghouse) groups=626(ghouse)

[ghouse@cli01 scratch]$ ls -l

total 107096

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0001

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0002

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0003

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0004

-rw-r----- 1 nobody nobody 7884800 Feb 24 10:58 assemblyres.0005

-rw-r----- 1 nobody jwilson 10077184 Feb 24 10:57 sampleData1

-rw-r----- 1 nobody jwilson 15199232 Feb 24 10:57 sampleData2

-rw-r----- 1 nobody jwilson 17921024 Feb 24 10:58 sampleData3

-rw-r----- 1 nobody jwilson 3472384 Feb 24 10:58 sampleData4

-rw-r----- 1 nobody nobody 23564288 Feb 24 10:59 tset0a

[ghouse@cli01 scratch]$ file sampleData1

sampleData1: regular file, no read permission

Creating new files as squashed or mapped user

New files created by a squashed user will become owned by the
squash user and group, typically nobody/nobody (99/99).
New files created by a mapped user will be translated to their UID
and GID on the Lustre file system.

[jwilson@cli01 ~]$ dd if=/dev/zero of=poultryData bs=1024 count=1300

[jwilson@cli01 scratch]$ ls -l poultryData

-rw-r----- 1 jwilson jwilson 1331200 Feb 24 13:41 poultryData

[root@trusted scratch]# ls -l poultryData

-rw-r----- 1 20013 20013 1331200 Feb 24 13:41 poultryData

Integration with existing systems

• The trusted property will need to be enabled for maps
including existing clients. These maps will need to be created
before enabling Nodemap.

• Unmapped hosts match the default policy which squashes by
default. This protects against both root access and by access
from unknown hosts, should firewalls not be blocking those
hosts.

• Hosts and maps can be added while the file system is online. In
Lustre 2.9, it will take around ten seconds to sync configuration.

Security improvements from Nodemap

Nodemap can allow us to:

• Cherry-pick which users on a remote system can access a
Lustre system.

• Ensure that unknown systems are squashed when mounting
the file system.

• Re-map either UID or GIDs, or both, to prevent conflicts or
restrict access.

What does Shared Key offer?

• Isolation
- Prevents clients from mounting without the shared key
- Group and isolate NID ranges to a specific key (w/ Nodemap)

• Message Integrity
- Prevents man-in-the-middle attacks
- Ensure RPCs cannot be altered without detection

• Privacy
- Prevents eavesdropping
- Encryption of RPCs

• Ability to choose security flavors between OSS, MDS, MGS, and
client nodes, as site policy dictates

Shared Key Mechanism Security Flavors

skn ska ski skpi
Name Shared Key

Null
Shared Key

Auth
Shared Key

Integrity
Shared Key
Privacy and

Integrity
Key

Required
RPC

Integrity
RPC

Privacy
Bulk

Integrity
Bulk

Privacy

Command Parameters for lgss_sk

In the Bob’s Biology Lab example, we will call lgss_sk with the following
parameters:

-f lustre : The file system using our key is named lustre

-e 86400 : Contexts for this key expire in 86400 seconds (one day)
• default is over 68 years so good idea to set this

-n Biology : Nodemap name for this key is Biology

-w /root/Biology.key : Generate key file in this location

-d /dev/urandom : Source of entropy
• /dev/random is the default (and higher quality) entropy source
• /dev/urandom generated more quickly for testing

Shared Key Integrity Setup

We create a Shared Key key file for the Biology lab machines and
distribute the key to all Lustre servers and Biology lab clients:

[root@mds ~]$ /usr/sbin/lgss_sk -f lustre -e 86400 -n Biology -w
/root/Biology.key -d /dev/urandom

[root@mds ~]$ scp /root/Biology.key oss01:/root/Biology.key

[root@mds ~]$ scp /root/Biology.key cli01:/root/Biology.key

Then, unmount the Biology clients:
[root@cli01 ~]$ umount /mnt/lustre

[root@cli02 ~]$ umount /mnt/lustre

On the MGS, we set SPTLRPC security flavor to Shared Key Integrity(ski)
for connections between clients and the MDT, and between clients and
OSTs on the Lustre TCP network:
[root@mds ~]$ lctl conf_param lustre.srpc.flavor.tcp.cli2ost=ski

[root@mds ~]$ lctl conf_param lustre.srpc.flavor.tcp.cli2mdt=ski

Shared Key Integrity Setup, continued

• Install keyutils package on all Lustre servers and clients.
• Unmount all Lustre resources.
• On all Lustre servers and Biology lab clients, we create /etc/request-

key.d/lgssc.conf, adding the following:

create lgssc * * /usr/sbin/lgss_keyring %o %k %t %d %c %u %g %T %P %S

• Enable lsvcgssd Shared Key and MDS service support:
• Add -s –m to LSVCGSSDARGS variable in /etc/sysconfig/lsvcgss on MDS

• Enable Shared Key and OSS service support:
• Add -s –o to LSVCGSSDARGS variable in /etc/sysconfig/lsvcgss on OSS

• Start lsvcgssd on the MDS and OSS servers with service lsvcgss start
• Load the ptlrpc_gss module on all servers with modprobe ptlrpc_gss

• Mount the MGT/MDT and OSTs with the -o skpath=/root/Biology.keyoption.

Mounting the Shared Key Integrity file system
[root@cli01 ~]$ modprobe ptlrpc_gss

[root@cli01 ~]$ mount –t lustre –o skpath=/root/Biology.key
172.16.0.51@tcp:/lustre /mnt/lustre

Verify OSC and MDC client connections are using ski:
[root@cli01 ~]$ lctl get_param *.*.srpc_*

mdc.lustre-MDT0000-mdc-ffff88007ca7b000.srpc_contexts=

ffff88007b85fbc0: uid 0, ref 2, expire 1457035621(+86374), fl uptodate,cached,, seq 4, win 2048,

key 01dc5f9f(ref 1), hdl 0xfd4cae388b699bb6:0xf0d58784672e4c93, mech: sk

mdc.lustre-MDT0000-mdc-ffff88007ca7b000.srpc_info=

rpc flavor: ski

bulk flavor: ski

[…]

osc.lustre-OST0000-osc-ffff88007ca7b000.srpc_contexts=

ffff88007b85f5c0: uid 0, ref 2, expire 1457035621(+86374), fl uptodate,cached,, seq 1, win 2048,

key 2cec1f5a(ref 1), hdl 0xfd23f559c34ef35:0xf0d58784672e4c94, mech: sk

osc.lustre-OST0000-osc-ffff88007ca7b000.srpc_info=

rpc flavor: ski

bulk flavor: ski

[…]

osc.lustre-OST0001-osc-ffff88007ca7b000.srpc_contexts=

ffff88007b85f380: uid 0, ref 2, expire 1457035621(+86374), fl uptodate,cached,, seq 1, win 2048,

key 0ed7fca8(ref 1), hdl 0xfd23f559c34ef36:0xf0d58784672e4c95, mech: sk

osc.lustre-OST0001-osc-ffff88007ca7b000.srpc_info=

rpc flavor: ski

bulk flavor: ski

Without a valid key, mount fails!

If we try to mount Lustre somewhere besides Bob’s Biology Lab, the
mount is refused:

[root@cli02 ~]$ mount -t lustre 172.16.0.51@tcp:/lustre /mnt/lustre

mount.lustre: mount 172.16.0.51@tcp:/lustre at /mnt/lustre failed:
Connection refused

Enabling Privacy and Integrity using Shared Key

On MGS node, we set SPTLRPC security flavor to Shared Key Privacy and
Integrity(skpi) for all connections between clients and the Lustre MDT:

[root@mds ~]$ lctl conf_param lustre.srpc.flavor.tcp.cli2mdt=skpi

Next, we set flavor between clients and OSTs:

[root@mds ~]$ lctl conf_param lustre.srpc.flavor.tcp.cli2ost=skpi

Wait about a minute, then verify security flavor for the Biology lab is now
skpi:

[root@cli01 ~]$ lctl get_param *.*.srpc_*

mdc.lustre-MDT0000-mdc-ffff88007ca7b000.srpc_contexts=

ffff88007c0aa140: uid 0, ref 2, expire 1457037129(+83108), fl uptodate,cached,, seq 131, win
2048, key 2e6a9ffc(ref 1), hdl 0xfd4cae388b699bb7:0xf0d58784672e4c96, mech: sk

mdc.lustre-MDT0000-mdc-ffff88007ca7b000.srpc_info=

rpc flavor: skpi

bulk flavor: skpi

[…]
osc.lustre-OST0000-osc-ffff88007ca7b000.srpc_contexts=

ffff88007c0aa740: uid 0, ref 2, expire 1457037125(+83104), fl uptodate,cached,, seq 131, win
2048, key 09b4c5bd(ref 1), hdl 0xfd23f559c34ef38:0xf0d58784672e4c97, mech: sk

osc.lustre-OST0000-osc-ffff88007ca7b000.srpc_info=

rpc flavor: skpi

bulk flavor: skpi

[…]

osc.lustre-OST0001-osc-ffff88007ca7b000.srpc_contexts=

ffff88007c0aa8c0: uid 0, ref 2, expire 1457037123(+83102), fl uptodate,cached,, seq 131, win
2048, key 05ef0d0c(ref 1), hdl 0xfd23f559c34ef37:0xf0d58784672e4c98, mech: sk

osc.lustre-OST0001-osc-ffff88007ca7b000.srpc_info=

rpc flavor: skpi

bulk flavor: skpi

Verifying privacy using Shared Key

Thank You!
OpenSFS for helping fund this project

Generous Volunteers: Nathan Rutman, Andreas Dilger, John
Hammond, and Ken Hornstein.

Andrew Korty, Indiana University Security Officer

Kit Westneat, Jeremy Filizetti, Nathan Lavender, Chris Hanna and
the rest of IU’s HPFS team past and present for their extraordinary
efforts.

Nodemap has been added to the 2.9 Lustre release manual:
http://review.whamcloud.com/#/c/17634/

Watch for Shared Key to fully land in 2.9!

Shared Key Security Process

• Upon server connect, security context lookup triggers upcall to
request-key

• Resulting action is determined by key type, which is lgssc for Lustre
• Scan /etc/request.key.d/lgssc.conf for execution program and

arguments
• Upcall information parsed by lgss_keyring and token sent back to

kernel space for SEC_CTX_INIT RPC
• RPC received by server, sent to pipe between kernel and user space
• lsvcgssd responds back over the same file descriptor, and server

sends RPC reply
• Client parses reply and updates the key which imports the context

into the kernel
• Now the OBD connect can continue!

Shared Key File

• Key is generated by lgss_sk utility

• Must be loaded into kernel keyring
• The -t option specifies the context (mgs, server, client)
• Mount via mount.lustre with –o skpath=path
• Options and devices from command determines context

• The skpath can be a directory or a file
• For directory, all key files will be loaded

• Any key load failures cause mount to fail!

• Big endian on disk; native byte-ordering in keyring

Shared Key File Contents

• Encryption algorithm - Used for Privacy mode (skpi)
- AES256 (default)

• HMAC algorithm (Used for Auth, Integrity, and Privacy modes)
- SHA256 (default)
- SHA512

• File system name and/or MGS NIDs (limited to 16 NIDs)
- One or both must be specified

• Context expiration in seconds (default: INT_MAX)

• Session key length

• DH Shared Secret Key length

lsvcgss daemon
• Server side user-space component
• Handles token from SEC_CTX_INIT RPC and reply token
• Allows specific mechanisms to be enabled:

• Kerberos: -k
• Shared-Key: -s
• GSS Null: -n

• Allows individual services to be enabled:
• MGS: -g
• MDS: -m
• OSS: -o

• In foreground, logs to STDOUT; otherwise, to syslog
• Up to four levels of verbosity (-v, -vv, -vvv, -vvvv)
• Modify /etc/sysconfig/lsvcgss to change flags

Shared Key and Kernel Keyring

• Keys are loaded into user session keyring

• Specific key description, which can be found with keyctl_search()

• MGS
- lustre:MGS:nodemap (e.g. lustre:MGS:Biology)

• MDS/OSS
- lustre:fsname:nodemap (e.g. lustre:scratch:Biology)

• Client
- lustre:fsname (e.g. lustre:scratch)

OR
- lustre:MGC<NID> (e.g. lustre:MGC192.168.1.1@tcp)

