
ORNL is managed by UT-Battelle

for the US Department of Energy

Lustre and memory

James Simmons

Oak Ridge National Laboratory

2 Presentation name

More than memory allocation

• Few understand the Lustre code

• Memory is core functionality

• With Lustre code demystified people can contribute

3 Presentation name

High level view

• User space allocations

– Lustre utilities and tools

• Kernel space

– NUMA aware

– Classes

• Pages

• SLOB / SLUB / SLAB

– SLOB – simple list of objects, SLUB – no object queues

• Virtual memory manager

• Others not used by Lustre -> CMA, iomem

• Excellent read -
https://www.kernel.org/doc/gorman/pdf/understand.pdf

4 Presentation name

Slab handling

• Created to limit memory fragmentation

• /proc/slabinfo and /proc/slabtop provide info on caches

• NUMA versions exist

• Interface to manage caches

– kmem_cache_create, kmem_cache_shrink, kmem_cache_destroy

– Slab caches can merge

• Managing buffers from slabs

– kmem_cache_alloc(), kmem_cache_free()

• kmalloc is wrapper to use general purpose caches of specific order
size.

– GFP_xxx flags discussed when pages are covered

5 Presentation name

Virtual contiguous memory manager

• Functions to allocate virtual memory

– valloc, vfree, vzalloc

• Pro : does not care about physical memory fragmentation

• Con: has global spin lock --- bad for performance

– Why use ? – kmalloc has size limitations (arch dependent, x86 128k+)

– Will see this when Lustre striping is > 672 for pre-pfl code

– Libcfs/LNet uses vmalloc when allocating more than 2 pages

• Kernel data structure

– struct vm_area + struct vm_struct

• Used for memory mapping

– Lustre llite vvp layer and llite_mmap.c manage this.

6 Presentation name

Lustre memory allocation wrapper

• Libcfs/LNET - LIBCFS_ALLOC, LIBCFS_FREE

– Used to find memory leaks

– lctl set_param debug+=malloc

• Lustre – OBD_ALLOC, OBD_FREE

– Also used to find memory leaks - leak_finder.pl

– Removed upstream

• Why they exist?

– Left overs from when Lustre was both user land and kernel space product

– Written before trace events / ftrace existed for debugging

– Kernel now has excellent memleak trace tools

• Will be replaced in 2.11 with trace event / ftrace

– Replace wrappers with direct kmalloc / vmalloc calls

7 Presentation name

Kernel page handling

• Page allocation

– Memory Zones

• GFP_HIGHMEM, GFP_DMA

– Context

• GFP_ATOMIC, GFP_KERNEL, GFP_FS

– NUMA node id

• alloc_page_node(..)

– Buddy allocator

• Power of 2 allocations

• alloc_pages(gfp_mask, order);

• Single page helpers - __get_free_page(..)

• Page release

– free_page(), free_pages()

8 Presentation name

Page management

• Pages are finite in number

• LRU (least recently used) like algorithm

– Two list, active and inactive

– All pages except slab allocator are managed by LRU

• Difficult to age pages for objects created by slab allocator

– Linked to page cache handling

• Page Cache – set of data structures that contain “backed” pages

– memory mapped files

– block reads from fs, HW devices

– shared memory,

– swap

9 Presentation name

Page cache usage for typical file systems/block devices

• For file system avoid expensive reads from devices

• Pages faulted in for memory mmap file (llite vvp and llite_mmap.c)

• Stored in page hash which is hashed on the struct address_space

• Function interfaces

– add_to_page_cache(…), delete_from_page_cache(),

– page_cache_alloc(...), page_cache_release()

• Filesystem interfaces to page cache

– file_read_iter, file_write_iter, file_readpage

• readahead

– userland syscall that moves a file into page cache

10 Presentation name

Lustre is not typical

• Issues with kernel readahead

– Lustre tries to trim readahead window which kernel can’t detect.

– When the stride exceeds backing_dev_info::ra_pages, kernel will think it is a
random read.

• Does Lustre use the page cache ?

– Yes : metadata operations, vvp layer it llite

– No : the CLIO abstraction

11 Presentation name

Lustre metadata caching

• Normal file systems cache exact copy of raw directory pages in
cache

– Logical offset used as index to find the page

• File names are distributed across nodes based on their hash

• Hash of first directory entry is index to directory pages cached

• Hash are not unique; collisions happen but are rare

12 Presentation name

Lustre metadata implementation

• Lustre internal xxx_read_page implementation

– Not related to struct address_space_operations readpage member

– Layout of readdir pages : struct lu_dir_ent

– Data is bundled together as struct lu_dirpage, as transmitted on wire.

• This data is stored in the page cache

– lmv_read_page() : created lu_dir_ent from transmitted data

• If DNE striping info call lmv_read_striped_page(). Also calls mdc_read_page()

• else call mdc_read_page() directly – fetch if not in client page_cache

• Pages with hash collisions are discarded in mdc_read_page

• The llite metadata interaction

– ll_iterate/ll_dir_read : request data from mdc and fills it in for end user

– Directory statahead functionality reads metadata into memory. Like readahead

• Special kernel thread gathers metadata information

13 Presentation name

Lustre CLIO abstraction

• CLIO abstraction

– Base is abstraction on top of struct lu_object, struct lu_object_header, etc …

• struct lu_* is an infrastructre to manage object life cycle and caching

• Struct cl_device, struct cl_object, struct cl_object_header

– struct cl_object represents file system i.e file, stripe

• Something like a stripe is considers a sub-object. lov_subobject.c is example. Tied to
parent life cycle.

• Subsystems create abstractions on top of struct cl_object.

– Struct lov_object, struct lov_subobject, strct osc_object.

– struct cl_page represents a portion of file cached in memory

• Another layer on top of struct cl_object

• kept in the radix tree hanging off the cl_object

• Can be owned by struct cl_io (state machine to mange high level I/O activity)

14 Presentation name

More CLIO abstraction

• struct cl_io_slice : IO state private for a layer.

– vvp_io, lov_io, osc_io

• Others: struct cl_locks, struct cl_read_ahead

• clio’s version of a page cache - struct cl_client_cache

– lov module : static lov_cache, osc module : cl_cache in struct client_obd

– Track "unstable" pages : are pages pinned by the ptlrpc * layer for recovery
purposes

– LRU of cached pages

• Abstraction on top of CLIO is always defined in xxx_cl_internal.h
headers.

15 Presentation name

Looking at clients layer using CLIO

• OSC

– osc_lock.c : osc_lock -> cl_lock handling and interactive with LDLM

– osc_object.c : osc_object -> cl_object

– osc_page.c : osc_page -> cl_page

– osc_io.c : osc_io -> cl_io

• LOV

– lov_lock.c : lov_lock -> cl_lock handling and interactive with LDLM

– lov_object.c : lov_object -> cl_object

– lov_page.c : lov_page -> cl_page

– Family for sub-objects (i.e stripes)

• lov_sublock.c, lov_subobject.c, lov_subpage.c

• LLITE

– Not the same mapping as above. llite handle VFS <-> lustre

– Base CLIO structure – struct ll_cl_context in llite_internal.h

16 Presentation name

Lustre ll_readpage() use of CLIO

• Base CLIO structure – struct ll_cl_context in llite_internal.h

• struct address_space_operations : readpage = ll_readpage()

– Kernel readpage() implemenation places file data into page cache

– Handles fast read path (ll_do_fast_read)

• Create cl_io and get ldlm lock is expensive

• If page exist in page cache then lock already exist so just grab from memory cache

• cl_vmpage_page() maps page cache page to a cl_page

• Struct vvp_page is then retrieve by cl2vvp_page()

– Struct vvp_page is abstraction on top of cl_page related to readahead.

– Non fast read path cl_page_find() handles map page cache page <->
cl_page

17 Presentation name

Lustre readahead use of CLIO

• CLIO struct cl_read_ahead provides glue between layers

– lov (lov_io.c) need to work together due to the impact of striping

– osc (osc_io.c) to handle ldlm locking

– llite (vvp_io.c) to handle potential file group locking

• Lustre llite currently provides its own readahead infrastructure

– Most this code exist in llite rw.c as ra_xxxx functions.

– WARNING this most likely will change for lustre 2.11

• https://review.whamcloud.com/#/c/26469

• New code uses struct address_space readpages() and padata to enable parallel operations

https://review.whamcloud.com/#/c/26469

18 Presentation name

Potential future changes

• The removal of Lustre internal readahead implementation

• Take advantage of DAX. Native support for burst buffers.

• Potential changes due to upstream client leaving staging.

19 Presentation name

Closing remarks

• Thank you for listening

• Examined memory management in Lustre kernel code

• Empower people so they can consider contributing.

