DAOS: A New Storage Paradigm

Mohamad Chaarawi, High Performance Data Division, Intel
Notices

Acknowledgment: This material is based upon work supported by Lawrence Berkeley National Labs subcontracts 7078611 and 7216501 and Lawrence Livermore National Labs subcontract B608115.

Disclosure Notice: This presentation is bound by Non-Disclosure Agreements between Intel Corporation, the Department of Energy, and DOE National Labs, and is therefore for Internal Use Only and not for distribution outside these organizations or publication outside this Subcontract.

USG Disclaimer: This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Intel Disclaimer: Intel makes available this document and the information contained herein in furtherance of DesignForward, FastForward and the Extreme Scale Initiative. None of the information contained therein is, or should be construed, as advice. While Intel makes every effort to present accurate and reliable information, Intel does not guarantee the accuracy, completeness, efficacy, or timeliness of such information. Use of such information is voluntary, and reliance on it should only be undertaken after an independent review by qualified experts. Access to this document is with the understanding that Intel is not engaged in rendering advise or other professional services. Information in this document may be changed or updated without notice by Intel.

This document contains copyright information, the terms of which must be observed and followed. Reference herein to any specific commercial product, process or service does not constitute or imply endorsement, recommendation, or favoring by Intel or the US Government.

Intel makes no representations whatsoever about this document or the information contained herein. IN NO EVENT WILL INTEL BE LIABLE TO ANY PARTY FOR ANY DIRECT, INDIRECT, SPECIAL OR OTHER CONSEQUENTIAL DAMAGES FOR ANY USE OF THIS DOCUMENT, INCLUDING, WITHOUT LIMITATION, ANY LOST PROFITS, BUSINESS INTERRUPTION, OR OTHERWISE, EVEN IF INTEL IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Copyright © 2017 Intel Corporation. All rights reserved.
Agenda

• Storage Challenges and DAOS overview
• Next Gen HPC Storage Vision
• Next Gen Storage Stack
• Middleware I/O & Applications
• DAOS/Lustre Integration
Today’s HPC Storage System Pain Points

- HPC storage systems perform poorly with random, unaligned or small I/Os
 - Require larger & larger well-aligned sequential I/Os
- Scientific data models limited by POSIX
 - One-size-fits-all POSIX data model
 - **Worst-case** concurrency control mechanism
- Hitting scalability limits of traditional PFS
Challenge: I/O Latency & IOPS

- HDD
- Software stack
Challenge: I/O Latency & IOPS
Challenge: I/O Latency & IOPS

Traditional storage stack entirely masks low latency of 3D XPoint™!
Challenge: Access Granularity

Traditional storage stack entirely masks low latency & capabilities of 3D XPoint™!
Distributed Asynchronous Object Storage

- **Scale-out object store** designed from the ground up for nextgen storage & fabric technologies
 - High **throughput/IOPS**
 - Byte addressable
 - **OS bypass** with lightweight client/server

- **Advanced storage API**
 - New scalable **storage model** suitable for both **structured** & **unstructured** data
 - **Non-blocking** data & metadata operations

* I/O middleware not ported to DAOS
** I/O middleware prototyped over DAOS
Distributed Asynchronous Object Storage

- Scale-out object store designed from the ground up for nextgen storage & fabric technologies
 - High throughput/IOPS
 - Byte addressable
 - OS bypass with lightweight client/server
- Advanced storage API
 - New data & storage model suitable for both structured & unstructured data
 - Non-blocking data & metadata operations

Open source

[APACHE 2.0 License](https://github.com/daos-stack)

<table>
<thead>
<tr>
<th>Π</th>
</tr>
</thead>
<tbody>
<tr>
<td>Legion</td>
<td>NatCDF</td>
<td>HDF5**</td>
<td>POSIX I/O*</td>
<td>MPI-IO*</td>
<td>SCR*</td>
<td>FIT*</td>
<td>VelC*</td>
<td>Dataspaces**</td>
<td>Spark RDD*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(NoSQL*)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NFS*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>DFS*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>S3*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Swift*</td>
</tr>
</tbody>
</table>

DAOS

Open Source Apache 2.0 License

- I/O middleware not ported to DAOS
- I/O middleware prototyped over DAOS

* I/O middleware not ported to DAOS
** I/O middleware prototyped over DAOS
Next Gen HPC Storage Vision

• NVM storage storing datasets
Next Gen HPC Storage Vision

• NVM storage storing datasets
Next Gen HPC Storage Vision

• NVM storage storing datasets
Next Gen HPC Storage Vision

• NVM storage storing datasets
Next Gen HPC Storage Vision

- NVM storage storing datasets
Next Gen HPC Storage Vision

• NVM storage storing datasets
 • *Externally* accessible
Next Gen HPC Storage Vision

• NVM storage storing datasets
 • Externally accessible
Next Gen HPC Storage Vision

• NVM storage storing datasets
 • **Externally** accessible

• **System namespace**
 • **Global** POSIX namespace
 • **Links** to datasets
 • Binaries, libraries, user files, ...

Data streaming (e.g. from instrument(s))
Next Gen Storage Stack

New storage API (DAOS) provides extended capabilities and high bandwidth/IOPS to middleware
Next Gen Storage Stack

Port I/O middleware (HDF5, MPI-I/O, ...) to new storage backend and **augment** API to take advantage of new capabilities

New storage API (DAOS) provides extended capabilities and high bandwidth/IOPS to middleware
Next Gen Storage Stack

Evaluate applications (*HACC, ACME, CLAMR*) and new programming model (*Legion*) over enhanced I/O middleware.

Port I/O middleware (*HDF5, MPI-I/O, ...*) to new storage backend and augment API to take advantage of new capabilities.

New storage API (*DAOS*) provides extended capabilities and high bandwidth/IOPS to middleware.
Lightweight Storage Stack

• Mercury user space function shipping
• Applications link directly with DAOS lib
• Userspace DAOS server
 • Mmap non-volatile memory (NVML)
 • NVMe access through SPDK/BlobFS
Storage Model

DAOS Tier

Pool

Container

Object

DKey

Akey[i]

dakey

akey

0 1 2 3 ... 4k

Record size = 1 Byte
(Byte Array)

akey

0 1 2 3 ... 10

Record size = 1024 Bytes

Single any-size value
DAOS Ecosystem

HPC Apps
(HACC, ACME, CLAMR, …)

Big Data & AI Apps
(No)SQL*, Spark RDD*

Enterprise & Cloud Apps
NFS*, S3*

Legion
NetCDF

POSIX I/O*
MPI-IO*
SCR*, FTI*, VeloC*
Dataspaces*

HDF5**, Dataspaces*

DAOS
Open Source Apache 2.0 License

NVRAM
NVMe

Byte-granular data/metadata
Bulk data (e.g. checkpoints)

* I/O middleware not ported to DAOS
** I/O middleware prototyped over DAOS
HDF5

- Mapping HDF5 to DAOS:
 - HDF5 file -> DAOS Container
 - HDF5 Objects -> DAOS KV objects

- HDF5 DAOS VOL Plugin
 - Prototyped in ESSIO
 - All applications or middleware I/O libraries (e.g. NetCDF4, PIO, etc.) that use HDF5 would be able to utilize the DAOS tier with minimal changes.
 - Newly developed applications or I/O libraries can utilize new extensions to HDF5 that are not available to date without the DAOS VOL plugin (some might be added to the POSIX HDF5 plugin in the future):
 - Asynchronous I/O for both metadata and raw data operations
 - Query, Indexing, & Analysis shipping
 - Container Snapshots
 - User controlled transactions
 - End to End data integrity
POSIX I/O

- POSIX Encapsulation
 - Each DAOS container encapsulates a namespace.
 - Highly scalable I/O to single shared file or file per process with full OS bypass.
 - Relaxed POSIX compliance
 - OK for most applications
 - Strong compliance comes at the price of complexity and performance.

- POSIX Extensions
 - Asynchronous I/O operations.
 - POSIX namespace snapshots

- Not yet implemented
MPI-I/O

- **MPI-I/O Support**
 - Implement an ADIO driver in ROMIO (widely used as the de-facto MPI-I/O implementation in most MPI libraries).
 - Minimal application modification (set a hint to use the DAOS driver) + Supports middleware libraries that use MPI-I/O but have not implemented a DAOS driver as a backend.
 - Scalable mapping of an MPI file to a DAOS object with implicit stripping across multiple Distribution Keys.
 - Consistency and Recoverability features of DAOS epochs can be exposed through `MPI_File_sync()` that advances the container epoch.

- **Not yet implemented**

Mapping MPI-I/O to DAOS:
- 1 DAOS container to hold 1 MPI-I/O file.
- File striped across multiple object D-Keys
Application Evaluation

• **Legion**
 • Data Centric programming model
• **Hardware/Hybrid Accelerated Cosmology Code**
 • Improved fault tolerance by storing transactional checkpoints
• **Cell-Based Adaptive Mesh Refinement**
 • Use HDF5 instead of POSIX I/O
• **Accelerated Climate Modeling for Energy**
 • Ported NetCDF & PIO to HDF5 DAOS VOL plugin
DAOS/Lustre Integration

• DAOS Tier
 • **Checkpoint/defensive I/O**
 • Advanced data **analytics**
 • New data intensive **workflow**
 • New data-centric **programming models**
 • Storage media
 • 3D-XPoint **NVDIMMs**
 • byte-granular data & metadata
 • 3D-NAND or 3D-XPoint **SSDs**
 • bulk data, including checkpoint data

• Lustre Tier
 • **Robust** system namespace
 • Mature & scalable POSIX namespace
 • Rich feature sets
 • **Smooth** migration path
 • Lustre directly accessible through Mercury IOF
 • Slowly migrate applications to DAOS
 • APPs with strong POSIX requirements
 • Storage media
 • **Dual-ported JBOD**
 • **Dual-ported JBOF**
Single Namespace

Lustre directories & files
DAOS storage area
DAOS storage persistent reservation
HDF5 Container
DAOS POSIX Container
DAOS MPI-IO File

Legend:
- Lustre
- DAOS storage area
- DAOS storage persistent reservation
- HDF5 Container
- DAOS POSIX Container
- DAOS MPI-IO File

Diagram:
- Users
 - Buzz
 - .shrc
 - moon.mpg
 - mkl.so
 - hdf5.so
- Libraries
 - Apollo
 - EA: PUUID
 - Simul.h5
 - EA: CUUID
 - Mercury
 - EA: PUUID
 - Result.dn
 - EA: CUUID
 - Simul.out
 - EA: CUUID
- Projects

Data structures:
- Lustre directories & files
- DAOS storage area
- DAOS storage persistent reservation
- HDF5 Container
- DAOS POSIX Container
- DAOS MPI-IO File
Lustre/DAOS Data Mover

- DAOS container parking
 - Serialize/deserialize DAOS container to/from Lustre
 - DAOS specific format
 - Middleware agnostic
 - Retain history, snapshot and DAOS metadata

- Data transformation
 - Convert container from DAOS format to POSIX format and vice versa
 - Middleware dependent
 - MPI-IO & POSIX share same layout
 - hdf5dump
 - Specific snapshot or HCE
 - History lost in transformation
DAOS Development

• Extreme Scale Storage & I/O
 • DAOS prototype
 • N-way replication with online rebuild
 • Metadata replication with Raft
 • HDF5 VOL plugin + extensions
 • *End in Q2’17*

• Follow-on project
 • NVMe support
 • Automatic service discovery, configuration & monitoring

• Future Work
 • DAOS & HDF5 productization
 • MPI-IO support
 • Erasure code & Progressive layout
 • System integration
 • Management tools
 • Security model
 • Application evaluation in co-design
Questions?

Contact:

mohamad.chaarawi@intel.com
johann.lombardi@intel.com

Resources:

• https://github.com/daos-stack/daos